Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

OpenVino2019 handeling #545

Merged
merged 1 commit into from
Jul 11, 2019
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
23 changes: 21 additions & 2 deletions cvat/apps/auto_annotation/model_loader.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
import cv2
import os
import subprocess
import numpy as np

from cvat.apps.auto_annotation.inference_engine import make_plugin, make_network

Expand All @@ -28,9 +29,18 @@ def __init__(self, model, weights):
raise Exception("Following layers are not supported by the plugin for specified device {}:\n {}".
format(plugin.device, ", ".join(not_supported_layers)))

self._input_blob_name = next(iter(network.inputs))
iter_inputs = iter(network.inputs)
self._input_blob_name = next(iter_inputs)
self._output_blob_name = next(iter(network.outputs))

self._require_image_info = False

# NOTE: handeling for the inclusion of `image_info` in OpenVino2019
if 'image_info' in network.inputs:
self._require_image_info = True
if self._input_blob_name == 'image_info':
self._input_blob_name = next(iter_inputs)

self._net = plugin.load(network=network, num_requests=2)
input_type = network.inputs[self._input_blob_name]
self._input_layout = input_type if isinstance(input_type, list) else input_type.shape
Expand All @@ -39,7 +49,16 @@ def infer(self, image):
_, _, h, w = self._input_layout
in_frame = image if image.shape[:-1] == (h, w) else cv2.resize(image, (w, h))
in_frame = in_frame.transpose((2, 0, 1)) # Change data layout from HWC to CHW
results = self._net.infer(inputs={self._input_blob_name: in_frame})
inputs = {self._input_blob_name: in_frame}
if self._require_image_info:
info = np.zeros([1, 3])
info[0, 0] = h
info[0, 1] = w
# frame number
info[0, 2] = 1
inputs['image_info'] = info

results = self._net.infer(inputs)
if len(results) == 1:
return results[self._output_blob_name].copy()
else:
Expand Down