Skip to content

Commit

Permalink
YOLO adapted version of PASCAL VOC converter.py (#454)
Browse files Browse the repository at this point in the history
  • Loading branch information
dntxos authored and nmanovic committed May 31, 2019
1 parent 4298166 commit a311648
Show file tree
Hide file tree
Showing 6 changed files with 312 additions and 4 deletions.
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0

## [Unreleased]
### Added
- A converter to YOLO format
- Installation guide
- Linear interpolation for a single point
- Video frame filter
Expand Down
9 changes: 5 additions & 4 deletions utils/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,8 @@
## Description

This folder contains some useful utilities for Computer Vision Annotation Tool (CVAT). To read about a certain utility please choose a link:
- [Convert CVAT XML to PASCAL VOC](voc/converter.md)
- [Convert CVAT XML to MS COCO](coco/converter.md)
- [Convert CVAT XML to PNG mask](mask/converter.md)
- [Convert CVAT XML to TFRECORDS](tfrecords/converter.md)
- [Convert CVAT XML to PASCAL VOC](voc/converter.md)
- [Convert CVAT XML to MS COCO](coco/converter.md)
- [Convert CVAT XML to PNG mask](mask/converter.md)
- [Convert CVAT XML to TFRECORDS](tfrecords/converter.md)
- [Convert CVAT XML to YOLO](yolo/converter.md)
Empty file added utils/yolo/__init__.py
Empty file.
38 changes: 38 additions & 0 deletions utils/yolo/converter.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
# Utility for converting CVAT XML annotation file to YOLO format

## Description

Given a CVAT XML, this script reads the CVAT XML and writes the
annotations in YOLO format into a given directory. This implementation
supports both interpolation tracks from video and annotated images.

## Installation

Install necessary packages and create a virtual environment.

```bash
sudo apt-get update
sudo apt-get install -y --no-install-recommends python3-pip python3-venv python3-dev
```

```bash
python3 -m venv .env
. .env/bin/activate
cat requirements.txt | xargs -n 1 -L 1 pip install
```

## Usage

Run the script inside the virtual environment:

```bash
python converter.py --cvat-xml </path/to/cvat/xml> --image-dir </path/to/images> --output-dir </path/to/output/directory>
```

Case you need download frames from annotated video file submited to CVAT:

```bash
python converter.py --cvat-xml </path/to/cvat/xml> --output-dir </path/to/output/directory> --username <CVAT Username> --password <CVAT Password>
```

Please run `python converter.py --help` for more details.
264 changes: 264 additions & 0 deletions utils/yolo/converter.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,264 @@
#!/usr/bin/env python
#
# SPDX-License-Identifier: MIT
"""
Given a CVAT XML, this script reads the CVAT XML and writes the
annotations in YOLO format into a given directory.
This implementation supports both interpolation tracks from video and
annotated images.
"""

import os
import argparse
import glog as log
from lxml import etree
import requests


def parse_args():
"""Parse arguments of command line"""
parser = argparse.ArgumentParser(
description='Convert CVAT XML annotations to YOLO format'
)

parser.add_argument(
'--cvat-xml', metavar='FILE', required=True,
help='input file with CVAT annotation in xml format'
)

parser.add_argument(
'--image-dir', metavar='DIRECTORY', required=False,
help='directory which contains original images'
)

parser.add_argument(
'--output-dir', metavar='DIRECTORY', required=True,
help='directory for output annotations in YOLO format'
)

parser.add_argument(
'--username', metavar='USERNAME', required=False,
help='Username from CVAT Login page, required to download images'
)

parser.add_argument(
'--password', metavar='PASSWORD', required=False,
help='Password from CVAT Login page, required to download images'
)

parser.add_argument(
'--labels', metavar='ILABELS', required=False,
help='Labels (separated by comma) to extract. Example: car,truck,motorcycle'
)

return parser.parse_args()


def process_cvat_xml(xml_file, image_dir, output_dir,username,password,ilabels):
"""
Transforms a single XML in CVAT format to YOLO TXT files and download images when not in IMAGE_DIR
:param xml_file: CVAT format XML
:param image_dir: image directory of the dataset
:param output_dir: directory of annotations with YOLO format
:param username: Username used to login CVAT. Required to download images
:param password: Password used to login CVAT. Required to download images
:param ilabels: Comma separated ordered labels
:return:
"""
KNOWN_TAGS = {'box', 'image', 'attribute'}

if (image_dir is None):
image_dir=os.path.join(output_dir,"data/obj")
os.makedirs(image_dir, exist_ok=True)

os.makedirs(output_dir, exist_ok=True)
cvat_xml = etree.parse(xml_file)
basename = os.path.splitext( os.path.basename( xml_file ) )[0]
current_labels = {}
traintxt = ""
auto_lbl_count = 0

if (ilabels is not None):
vlabels=ilabels.split(',')
for _label in vlabels:
current_labels[_label]=auto_lbl_count
auto_lbl_count+=1

tracks= cvat_xml.findall( './/track' )

if (tracks is not None) and (len(tracks) > 0):
frames = {}

for track in tracks:
trackid = int(track.get("id"))
label = track.get("label")
boxes = track.findall( './box' )
for box in boxes:
frameid = int(box.get('frame'))
outside = int(box.get('outside'))
#occluded = int(box.get('occluded')) #currently unused
#keyframe = int(box.get('keyframe')) #currently unused
xtl = float(box.get('xtl'))
ytl = float(box.get('ytl'))
xbr = float(box.get('xbr'))
ybr = float(box.get('ybr'))

frame = frames.get( frameid, {} )

if outside == 0:
frame[ trackid ] = { 'xtl': xtl, 'ytl': ytl, 'xbr': xbr, 'ybr': ybr, 'label': label }

frames[ frameid ] = frame

width = int(cvat_xml.find('.//original_size/width').text)
height = int(cvat_xml.find('.//original_size/height').text)

taskid = int(cvat_xml.find('.//task/id').text)

urlsegment = cvat_xml.find(".//segments/segment/url").text
urlbase = urlsegment.split("?")[0]

httpclient = requests.session()
httpclient.get(urlbase)

csrftoken = "none"
sessionid = "none"

# Spit out a list of each object for each frame
for frameid in sorted(frames.keys()):
image_name = "%s_%08d.jpg" % (basename, frameid)
image_path = os.path.join(image_dir, image_name)
if not os.path.exists(image_path):
if username is None:
log.warn('{} image cannot be found. Is `{}` image directory correct?\n'.format(image_path, image_dir))
else:
log.info('{} image cannot be found. Downloading from task ID {}\n'.format(image_path, taskid))

if sessionid == "none":
if "csrftoken" in httpclient.cookies:
csrftoken = httpclient.cookies["csrftoken"]
elif "csrf" in httpclient.cookies:
csrftoken = httpclient.cookies["csrf"]

login_data = dict(username=username, password=password,
csrfmiddlewaretoken=csrftoken, next='/dashboard')

urllogin = urlbase+"/auth/login"
httpclient.post(urllogin, data=login_data,
headers=dict(Referer=urllogin))

if ("sessionid" in httpclient.cookies):
sessionid = httpclient.cookies["sessionid"]

url = urlbase+"/api/v1/tasks/"+str(taskid)+"/frames/"+ str(frameid)

req = httpclient.get(url, headers=dict(
csrftoken=csrftoken, sessionid=sessionid))

with open(image_path, 'wb') as fo:
fo.write(req.content)
print('Url saved as %s\n' % image_path)


frame = frames[frameid]

_yoloAnnotationContent=""

objids = sorted(frame.keys())

for objid in objids:

box = frame[objid]

label = box.get('label')
xmin = float(box.get('xtl'))
ymin = float(box.get('ytl'))
xmax = float(box.get('xbr'))
ymax = float(box.get('ybr'))

if not label in current_labels:
current_labels[label] = auto_lbl_count
auto_lbl_count+=1

labelid=current_labels[label]
yolo_x= (xmin + ((xmax-xmin)/2))/width
yolo_y= (ymin + ((ymax-ymin)/2))/height
yolo_w = (xmax - xmin) / width
yolo_h = (ymax - ymin) / height

if len(_yoloAnnotationContent) != 0:
_yoloAnnotationContent += "\n"

_yoloAnnotationContent+=str(labelid)+" "+"{:.6f}".format(yolo_x) +" "+"{:.6f}".format(yolo_y) +" "+"{:.6f}".format(yolo_w) +" "+"{:.6f}".format(yolo_h)
anno_name = os.path.basename(os.path.splitext(image_name)[0] + '.txt')
anno_path = os.path.join(image_dir, anno_name)

_yoloFile = open(anno_path, "w", newline="\n")
_yoloFile.write(_yoloAnnotationContent)
_yoloFile.close()

if len(traintxt)!=0:
traintxt+="\n"

traintxt+=image_path

else:
for img_tag in cvat_xml.findall('image'):
image_name = img_tag.get('name')
width = img_tag.get('width')
height = img_tag.get('height')
image_path = os.path.join(image_dir, image_name)
if not os.path.exists(image_path):
log.warn('{} image cannot be found. Is `{}` image directory correct?'.
format(image_path, image_dir))

unknown_tags = {x.tag for x in img_tag.iter()}.difference(KNOWN_TAGS)
if unknown_tags:
log.warn('Ignoring tags for image {}: {}'.format(image_path, unknown_tags))

_yoloAnnotationContent = ""

for box in img_tag.findall('box'):
label = box.get('label')
xmin = float(box.get('xtl'))
ymin = float(box.get('ytl'))
xmax = float(box.get('xbr'))
ymax = float(box.get('ybr'))

if not label in current_labels:
current_labels[label] = auto_lbl_count
auto_lbl_count += 1

labelid = current_labels[label]
yolo_x = (xmin + ((xmax-xmin)/2))/width
yolo_y = (ymin + ((ymax-ymin)/2))/height
yolo_w = (xmax - xmin) / width
yolo_h = (ymax - ymin) / height

if len(_yoloAnnotationContent) != 0:
_yoloAnnotationContent += "\n"

_yoloAnnotationContent += str(labelid)+" "+"{:.6f}".format(yolo_x) + " "+"{:.6f}".format(
yolo_y) + " "+"{:.6f}".format(yolo_w) + " "+"{:.6f}".format(yolo_h)

anno_name = os.path.basename(os.path.splitext(image_name)[0] + '.txt')
anno_path = os.path.join(image_dir, anno_name)

_yoloFile = open(anno_path, "w", newline="\n")
_yoloFile.write(_yoloAnnotationContent)
_yoloFile.close()

traintxt_file=open(output_dir+"/train.txt","w",newline="\n")
traintxt_file.write(traintxt)
traintxt_file.close()


def main():
args = parse_args()
process_cvat_xml(args.cvat_xml, args.image_dir, args.output_dir, args.username,args.password,args.labels)


if __name__ == "__main__":
main()
4 changes: 4 additions & 0 deletions utils/yolo/requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
argparse>=1.1
lxml>=3.5.0
glog>=0.3.1
requests==2.22.0

0 comments on commit a311648

Please sign in to comment.