Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Make the new multiple-inputs optimization function the default. #412

Merged
merged 3 commits into from
Mar 8, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
36 changes: 28 additions & 8 deletions cubed/array_api/linear_algebra_functions.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@
from cubed.core import blockwise, reduction, squeeze


def matmul(x1, x2, /):
def matmul(x1, x2, /, use_new_impl=True, split_every=None):
if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
raise TypeError("Only numeric dtypes are allowed in matmul")

Expand Down Expand Up @@ -47,7 +47,9 @@ def matmul(x1, x2, /):
dtype=dtype,
)

out = _sum_wo_cat(out, axis=-2, dtype=dtype)
out = _sum_wo_cat(
out, axis=-2, dtype=dtype, use_new_impl=use_new_impl, split_every=split_every
)

if x1_is_1d:
out = squeeze(out, -2)
Expand All @@ -62,13 +64,19 @@ def _matmul(a, b):
return chunk[..., nxp.newaxis, :]


def _sum_wo_cat(a, axis=None, dtype=None):
def _sum_wo_cat(a, axis=None, dtype=None, use_new_impl=True, split_every=None):
if a.shape[axis] == 1:
return squeeze(a, axis)

extra_func_kwargs = dict(dtype=dtype)
return reduction(
a, _chunk_sum, axis=axis, dtype=dtype, extra_func_kwargs=extra_func_kwargs
a,
_chunk_sum,
axis=axis,
dtype=dtype,
use_new_impl=use_new_impl,
split_every=split_every,
extra_func_kwargs=extra_func_kwargs,
)


Expand All @@ -91,7 +99,7 @@ def outer(x1, x2, /):
return blockwise(nxp.linalg.outer, "ij", x1, "i", x2, "j", dtype=x1.dtype)


def tensordot(x1, x2, /, *, axes=2):
def tensordot(x1, x2, /, *, axes=2, use_new_impl=True, split_every=None):
from cubed.array_api.statistical_functions import sum

if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
Expand Down Expand Up @@ -135,7 +143,13 @@ def tensordot(x1, x2, /, *, axes=2):
adjust_chunks=adjust_chunks,
axes=(x1_axes, x2_axes),
)
return sum(out, axis=x1_axes, dtype=dtype)
return sum(
out,
axis=x1_axes,
dtype=dtype,
use_new_impl=use_new_impl,
split_every=split_every,
)


def _tensordot(a, b, axes):
Expand All @@ -147,7 +161,13 @@ def _tensordot(a, b, axes):
return x


def vecdot(x1, x2, /, *, axis=-1):
def vecdot(x1, x2, /, *, axis=-1, use_new_impl=True, split_every=None):
if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
raise TypeError("Only numeric dtypes are allowed in vecdot")
return tensordot(x1, x2, axes=((axis,), (axis,)))
return tensordot(
x1,
x2,
axes=((axis,), (axis,)),
use_new_impl=use_new_impl,
split_every=split_every,
)
22 changes: 18 additions & 4 deletions cubed/array_api/searching_functions.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,24 +5,38 @@
from cubed.core.ops import arg_reduction, elemwise


def argmax(x, /, *, axis=None, keepdims=False):
def argmax(x, /, *, axis=None, keepdims=False, use_new_impl=True, split_every=None):
if x.dtype not in _real_numeric_dtypes:
raise TypeError("Only real numeric dtypes are allowed in argmax")
if axis is None:
x = reshape(x, (-1,))
axis = 0
keepdims = False
return arg_reduction(x, nxp.argmax, axis=axis, keepdims=keepdims)
return arg_reduction(
x,
nxp.argmax,
axis=axis,
keepdims=keepdims,
use_new_impl=use_new_impl,
split_every=split_every,
)


def argmin(x, /, *, axis=None, keepdims=False):
def argmin(x, /, *, axis=None, keepdims=False, use_new_impl=True, split_every=None):
if x.dtype not in _real_numeric_dtypes:
raise TypeError("Only real numeric dtypes are allowed in argmin")
if axis is None:
x = reshape(x, (-1,))
axis = 0
keepdims = False
return arg_reduction(x, nxp.argmin, axis=axis, keepdims=keepdims)
return arg_reduction(
x,
nxp.argmin,
axis=axis,
keepdims=keepdims,
use_new_impl=use_new_impl,
split_every=split_every,
)


def where(condition, x1, x2, /):
Expand Down
38 changes: 31 additions & 7 deletions cubed/array_api/statistical_functions.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,13 +17,21 @@
from cubed.core import reduction


def max(x, /, *, axis=None, keepdims=False):
def max(x, /, *, axis=None, keepdims=False, use_new_impl=True, split_every=None):
if x.dtype not in _real_numeric_dtypes:
raise TypeError("Only real numeric dtypes are allowed in max")
return reduction(x, nxp.max, axis=axis, dtype=x.dtype, keepdims=keepdims)
return reduction(
x,
nxp.max,
axis=axis,
dtype=x.dtype,
use_new_impl=use_new_impl,
split_every=split_every,
keepdims=keepdims,
)


def mean(x, /, *, axis=None, keepdims=False, use_new_impl=False, split_every=None):
def mean(x, /, *, axis=None, keepdims=False, use_new_impl=True, split_every=None):
if x.dtype not in _real_floating_dtypes:
raise TypeError("Only real floating-point dtypes are allowed in mean")
# This implementation uses NumPy and Zarr's structured arrays to store a
Expand Down Expand Up @@ -99,13 +107,23 @@ def _numel(x, **kwargs):
return nxp.broadcast_to(nxp.asarray(prod, dtype=dtype), new_shape)


def min(x, /, *, axis=None, keepdims=False):
def min(x, /, *, axis=None, keepdims=False, use_new_impl=True, split_every=None):
if x.dtype not in _real_numeric_dtypes:
raise TypeError("Only real numeric dtypes are allowed in min")
return reduction(x, nxp.min, axis=axis, dtype=x.dtype, keepdims=keepdims)
return reduction(
x,
nxp.min,
axis=axis,
dtype=x.dtype,
use_new_impl=use_new_impl,
split_every=split_every,
keepdims=keepdims,
)


def prod(x, /, *, axis=None, dtype=None, keepdims=False):
def prod(
x, /, *, axis=None, dtype=None, keepdims=False, use_new_impl=True, split_every=None
):
if x.dtype not in _numeric_dtypes:
raise TypeError("Only numeric dtypes are allowed in prod")
if dtype is None:
Expand All @@ -126,11 +144,15 @@ def prod(x, /, *, axis=None, dtype=None, keepdims=False):
axis=axis,
dtype=dtype,
keepdims=keepdims,
use_new_impl=use_new_impl,
split_every=split_every,
extra_func_kwargs=extra_func_kwargs,
)


def sum(x, /, *, axis=None, dtype=None, keepdims=False):
def sum(
x, /, *, axis=None, dtype=None, keepdims=False, use_new_impl=True, split_every=None
):
if x.dtype not in _numeric_dtypes:
raise TypeError("Only numeric dtypes are allowed in sum")
if dtype is None:
Expand All @@ -151,5 +173,7 @@ def sum(x, /, *, axis=None, dtype=None, keepdims=False):
axis=axis,
dtype=dtype,
keepdims=keepdims,
use_new_impl=use_new_impl,
split_every=split_every,
extra_func_kwargs=extra_func_kwargs,
)
24 changes: 20 additions & 4 deletions cubed/array_api/utility_functions.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,13 +3,29 @@
from cubed.core import reduction


def all(x, /, *, axis=None, keepdims=False):
def all(x, /, *, axis=None, keepdims=False, use_new_impl=True, split_every=None):
if x.size == 0:
return asarray(True, dtype=x.dtype)
return reduction(x, nxp.all, axis=axis, dtype=bool, keepdims=keepdims)
return reduction(
x,
nxp.all,
axis=axis,
dtype=bool,
keepdims=keepdims,
use_new_impl=use_new_impl,
split_every=split_every,
)


def any(x, /, *, axis=None, keepdims=False):
def any(x, /, *, axis=None, keepdims=False, use_new_impl=True, split_every=None):
if x.size == 0:
return asarray(False, dtype=x.dtype)
return reduction(x, nxp.any, axis=axis, dtype=bool, keepdims=keepdims)
return reduction(
x,
nxp.any,
axis=axis,
dtype=bool,
keepdims=keepdims,
use_new_impl=use_new_impl,
split_every=split_every,
)
13 changes: 9 additions & 4 deletions cubed/core/ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -875,7 +875,7 @@ def reduction(
intermediate_dtype=None,
dtype=None,
keepdims=False,
use_new_impl=False,
use_new_impl=True,
split_every=None,
extra_func_kwargs=None,
) -> "Array":
Expand Down Expand Up @@ -1127,8 +1127,9 @@ def block_function(out_key):
# Since block_function returns an iterator of input keys, the the array chunks passed to
# _partial_reduce are retrieved one at a time. However, we need an extra chunk of memory
# to stay within limits (maybe because the iterator doesn't free the previous object
# before getting the next).
extra_projected_mem = x.chunkmem
# before getting the next). We also need extra memory to hold two reduced chunks, since
# they are concatenated two at a time.
extra_projected_mem = x.chunkmem + 2 * chunk_memory(dtype, to_chunksize(chunks))

return general_blockwise(
_partial_reduce,
Expand Down Expand Up @@ -1173,7 +1174,9 @@ def _partial_reduce(arrays, reduce_func=None, initial_func=None, axis=None):
return result


def arg_reduction(x, /, arg_func, axis=None, *, keepdims=False):
def arg_reduction(
x, /, arg_func, axis=None, *, keepdims=False, use_new_impl=True, split_every=None
):
"""A reduction that returns the array indexes, not the values."""
dtype = nxp.int64 # index data type
intermediate_dtype = [("i", dtype), ("v", x.dtype)]
Expand All @@ -1199,6 +1202,8 @@ def arg_reduction(x, /, arg_func, axis=None, *, keepdims=False):
intermediate_dtype=intermediate_dtype,
dtype=dtype,
keepdims=keepdims,
use_new_impl=use_new_impl,
split_every=split_every,
)


Expand Down
4 changes: 2 additions & 2 deletions cubed/core/plan.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@
import networkx as nx
import zarr

from cubed.core.optimization import simple_optimize_dag
from cubed.core.optimization import multiple_inputs_optimize_dag
from cubed.primitive.blockwise import BlockwiseSpec
from cubed.primitive.types import PrimitiveOperation
from cubed.runtime.pipeline import visit_nodes
Expand Down Expand Up @@ -135,7 +135,7 @@ def optimize(
optimize_function: Optional[Callable[..., nx.MultiDiGraph]] = None,
):
if optimize_function is None:
optimize_function = simple_optimize_dag
optimize_function = multiple_inputs_optimize_dag
dag = optimize_function(self.dag)
return Plan(dag)

Expand Down
18 changes: 15 additions & 3 deletions cubed/nan_functions.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@
# https://github.com/data-apis/array-api/issues/621


def nanmean(x, /, *, axis=None, keepdims=False):
def nanmean(x, /, *, axis=None, keepdims=False, use_new_impl=True, split_every=None):
"""Compute the arithmetic mean along the specified axis, ignoring NaNs."""
dtype = x.dtype
intermediate_dtype = [("n", nxp.int64), ("total", nxp.float64)]
Expand All @@ -31,6 +31,8 @@ def nanmean(x, /, *, axis=None, keepdims=False):
intermediate_dtype=intermediate_dtype,
dtype=dtype,
keepdims=keepdims,
use_new_impl=use_new_impl,
split_every=split_every,
)


Expand Down Expand Up @@ -59,7 +61,9 @@ def _nannumel(x, **kwargs):
return nxp.sum(~(nxp.isnan(x)), **kwargs)


def nansum(x, /, *, axis=None, dtype=None, keepdims=False):
def nansum(
x, /, *, axis=None, dtype=None, keepdims=False, use_new_impl=True, split_every=None
):
"""Return the sum of array elements over a given axis treating NaNs as zero."""
if x.dtype not in _numeric_dtypes:
raise TypeError("Only numeric dtypes are allowed in nansum")
Expand All @@ -74,4 +78,12 @@ def nansum(x, /, *, axis=None, dtype=None, keepdims=False):
dtype = complex128
else:
dtype = x.dtype
return reduction(x, nxp.nansum, axis=axis, dtype=dtype, keepdims=keepdims)
return reduction(
x,
nxp.nansum,
axis=axis,
dtype=dtype,
keepdims=keepdims,
use_new_impl=use_new_impl,
split_every=split_every,
)
3 changes: 2 additions & 1 deletion cubed/tests/test_core.py
Original file line number Diff line number Diff line change
Expand Up @@ -365,7 +365,8 @@ def test_reduction_not_enough_memory(tmp_path):
spec = cubed.Spec(tmp_path, allowed_mem=50)
a = xp.ones((100, 10), dtype=np.uint8, chunks=(1, 10), spec=spec)
with pytest.raises(ValueError, match=r"Not enough memory for reduction"):
xp.sum(a, axis=0, dtype=np.uint8)
# only a problem with the old implementation, so set use_new_impl=False
xp.sum(a, axis=0, dtype=np.uint8, use_new_impl=False)


def test_partial_reduce(spec):
Expand Down
Loading