Skip to content

Commit

Permalink
Replace deprecated np.int with int (ultralytics#9307)
Browse files Browse the repository at this point in the history
Per 
```
/content/yolov5/utils/dataloaders.py:458: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
```

Signed-off-by: Glenn Jocher <[email protected]>

Signed-off-by: Glenn Jocher <[email protected]>
  • Loading branch information
glenn-jocher authored and Clay Januhowski committed Sep 8, 2022
1 parent 0c460ad commit 05a9150
Showing 1 changed file with 3 additions and 3 deletions.
6 changes: 3 additions & 3 deletions utils/dataloaders.py
Original file line number Diff line number Diff line change
Expand Up @@ -455,7 +455,7 @@ def __init__(self,
self.im_files = list(cache.keys()) # update
self.label_files = img2label_paths(cache.keys()) # update
n = len(shapes) # number of images
bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
bi = np.floor(np.arange(n) / batch_size).astype(int) # batch index
nb = bi[-1] + 1 # number of batches
self.batch = bi # batch index of image
self.n = n
Expand Down Expand Up @@ -497,7 +497,7 @@ def __init__(self,
elif mini > 1:
shapes[i] = [1, 1 / mini]

self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(int) * stride

# Cache images into RAM/disk for faster training (WARNING: large datasets may exceed system resources)
self.ims = [None] * n
Expand Down Expand Up @@ -867,7 +867,7 @@ def extract_boxes(path=DATASETS_DIR / 'coco128'): # from utils.dataloaders impo
b = x[1:] * [w, h, w, h] # box
# b[2:] = b[2:].max() # rectangle to square
b[2:] = b[2:] * 1.2 + 3 # pad
b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(int)

b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
Expand Down

0 comments on commit 05a9150

Please sign in to comment.