Skip to content

Commit

Permalink
Upgrade nectarchain to ctapipe 0.19 (#68)
Browse files Browse the repository at this point in the history
* Adapt package dependencies to prepare for ctapipe-0.19

* Upgrade to ctapipe 0.19.2

* Pin ctapipe_io_nectarcam version to 0.1.3

* Install pinned version of ctapipe-io-nectarcam via PyPI, the time for the conda-forge package to be built.

* Fixed typo

* Put ctapipe_io_nectarcam dependency back into conda dependencies, instead of a pip dependency (was a temporary hack, until the last release of ctapipe_io_nectarcam was published as a conda-forge package).

* Pin ctapipe 0.19.1 (same as for ctapipe_io_nectarcam)

* - minimize the RAM needed by not initializing arrays before reading events in waveformsContainer(s)
 - Update to ctapipe0.19

* Bump ctapipe version into CI tests.

* COMDIRAC is already embedded in DIRAC v8, no need to install it separately

* upgrading DQM to CTAPIPE 0.19.
(Next commit should ake care of flagged bad pixels and how to deal with them)

* upgrading DQM to CTAPIPE 0.19
(Fixing bad pixel handling hsould come next)

* Updated notebook

* bug fic for mean_camera_display.py

* Change the way the python version is specified, otherwise CI tests fail in testing the code for different python versions.

* Python 3.10 interpreted as 3.1 in CI

* clean commit history :
-update SPE fit parameters initialization
following updates of the ctapipe extractors
-improve the limits of generated charge histogram plots

---------

Co-authored-by: Jean-Philippe Lenain <[email protected]>
Co-authored-by: Halim Ashkar <[email protected]>
Co-authored-by: guillaume.grolleron <[email protected]>
  • Loading branch information
4 people authored Jul 12, 2023
1 parent 516b3ab commit cdded69
Show file tree
Hide file tree
Showing 14 changed files with 193 additions and 123 deletions.
4 changes: 2 additions & 2 deletions .github/workflows/ci.yml
Original file line number Diff line number Diff line change
Expand Up @@ -31,8 +31,8 @@ jobs:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: [3.8]
ctapipe-version: [v0.12.0]
python-version: [3.8, 3.9, "3.10", 3.11]
ctapipe-version: [v0.19.1]

defaults:
run:
Expand Down
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -84,7 +84,7 @@ conda env config vars set X509_CERT_DIR=${CONDA_PREFIX}/etc/grid-security/certif
# The following is needed for the environment variables, used for DIRAC configuration, to be available:
mamba deactivate
mamba activate nectarchain
pip install CTADIRAC COMDIRAC
pip install CTADIRAC
dirac-configure
```

Expand Down
7 changes: 2 additions & 5 deletions environment.yml
Original file line number Diff line number Diff line change
Expand Up @@ -3,13 +3,10 @@ channels:
- default
- conda-forge
dependencies:
- python=3.8 # nail the python version, so conda does not try upgrading / downgrading
- ctapipe=0.12
- python=3.11
- ctapipe=0.19.1
- ctapipe-io-nectarcam
- numpy=1.22 # higher versions >=1.23 don't work due to astropy4 dependency in ctapipe0.12
- jupyterlab
- protozfits=2.0
- pytables>=3.7
- pytest-runner
- pip
- pandas
Expand Down
56 changes: 30 additions & 26 deletions notebooks/Access NectarCAM data using DIRAC API.ipynb

Large diffs are not rendered by default.

14 changes: 8 additions & 6 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -15,15 +15,17 @@ classifiers = [
"Topic :: Scientific/Engineering :: Physics",
"Programming Language :: Python :: 3 :: Only",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11"
]
requires-python = "~=3.8"
requires-python = ">=3.8"
dependencies = [
"astropy~=4.2",
"ctapipe~=0.12",
"browser_cookie3",
"ctapipe~=0.19",
"ctapipe-io-nectarcam",
"numpy~=1.22",
"protozfits~=2.0",
"tables>=3.7",
"mechanize",
"pandas",
]
dynamic = ["version"]

Expand Down
21 changes: 13 additions & 8 deletions src/nectarchain/calibration/NectarGain/SPEfit/NectarGainSPE.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,9 @@

class NectarGainSPE(ABC) :
_Ncall = 4000000
_Windows_lenght = 40
_Order = 2

def __init__(self) :
#set parameters value for fit
self.__parameters = Parameters()
Expand Down Expand Up @@ -104,8 +107,8 @@ def _get_mean_gaussian_fit(charge_in, histo_in ,extension = ""):
charge = charge_in.data[~histo_in.mask]
histo = histo_in.data[~histo_in.mask]

windows_lenght = 80
order = 2
windows_lenght = NectarGainSPE._Windows_lenght
order = NectarGainSPE._Order
histo_smoothed = savgol_filter(histo, windows_lenght, order)

peaks = find_peaks(histo_smoothed,10)
Expand All @@ -126,15 +129,16 @@ def _get_mean_gaussian_fit(charge_in, histo_in ,extension = ""):

if log.getEffectiveLevel() == logging.DEBUG :
log.debug('plotting figures with prefit parameters computation')
fig,ax = plt.subplots(1,1,figsize = (8,8))
fig,ax = plt.subplots(1,1,figsize = (5,5))
ax.errorbar(charge,histo,np.sqrt(histo),zorder=0,fmt=".",label = "data")
ax.plot(charge,histo_smoothed,label = f'smoothed data with savgol filter (windows lenght : {windows_lenght}, order : {order})')
ax.plot(charge,weight_gaussian(charge,coeff_mean[0],coeff_mean[1],coeff_mean[2]),label = 'gaussian fit of the SPE')
ax.vlines(coeff_mean[1],0,peak_value,label = f'mean initial value = {coeff_mean[1] - coeff[1]:.0f}',color = "red")
ax.add_patch(Rectangle((coeff_mean[1]-coeff_mean[2], 0), 2 * coeff_mean[2], peak_value_mean,fc=to_rgba('red', 0.5)))
ax.set_xlim([peak_pos - 500,None])
ax.set_xlabel("Charge (ADC)", size=15)
ax.set_ylabel("Events", size=15)
ax.legend(fontsize=15)
ax.legend(fontsize=7)
os.makedirs(f"{os.environ.get('NECTARCHAIN_LOG')}/{os.getpid()}/figures/",exist_ok=True)
fig.savefig(f"{os.environ.get('NECTARCHAIN_LOG')}/{os.getpid()}/figures/initialization_mean_pixel{extension}_{os.getpid()}.pdf")
fig.clf()
Expand All @@ -149,8 +153,8 @@ def _get_pedestal_gaussian_fit(charge_in, histo_in ,extension = "") :
charge = charge_in.data[~histo_in.mask]
histo = histo_in.data[~histo_in.mask]

windows_lenght = 80
order = 2
windows_lenght = NectarGainSPE._Windows_lenght
order = NectarGainSPE._Order
histo_smoothed = savgol_filter(histo, windows_lenght, order)

peaks = find_peaks(histo_smoothed,10)
Expand All @@ -161,15 +165,16 @@ def _get_pedestal_gaussian_fit(charge_in, histo_in ,extension = "") :

if log.getEffectiveLevel() == logging.DEBUG :
log.debug('plotting figures with prefit parameters computation')
fig,ax = plt.subplots(1,1,figsize = (8,8))
fig,ax = plt.subplots(1,1,figsize = (5,5))
ax.errorbar(charge,histo,np.sqrt(histo),zorder=0,fmt=".",label = "data")
ax.plot(charge,histo_smoothed,label = f'smoothed data with savgol filter (windows lenght : {windows_lenght}, order : {order})')
ax.plot(charge,weight_gaussian(charge,coeff[0],coeff[1],coeff[2]),label = 'gaussian fit of the pedestal, left tail only')
ax.set_xlim([peak_pos - 500,None])
ax.vlines(coeff[1],0,peak_value,label = f'pedestal initial value = {coeff[1]:.0f}',color = 'red')
ax.add_patch(Rectangle((coeff[1]-coeff[2], 0), 2 * coeff[2], peak_value,fc=to_rgba('red', 0.5)))
ax.set_xlabel("Charge (ADC)", size=15)
ax.set_ylabel("Events", size=15)
ax.legend(fontsize=15)
ax.legend(fontsize=7)
os.makedirs(f"{os.environ.get('NECTARCHAIN_LOG')}/{os.getpid()}/figures/",exist_ok=True)
fig.savefig(f"{os.environ.get('NECTARCHAIN_LOG')}/{os.getpid()}/figures/initialization_pedestal_pixel{extension}_{os.getpid()}.pdf")
fig.clf()
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -457,17 +457,18 @@ def _run_obs_static(cls,it : int, funct,parameters : Parameters, pixels_id : int


if kwargs.get('figpath',0) != 0 :
fig,ax = plt.subplots(1,1,figsize=(8, 6))
fig,ax = plt.subplots(1,1,figsize=(8, 8))
ax.errorbar(charge,histo,np.sqrt(histo),zorder=0,fmt=".",label = "data")
ax.plot(charge,
np.trapz(histo,charge)*MPE2(charge,parameters['pp'].value, parameters['resolution'].value, parameters['mean'].value, parameters['n'].value, parameters['pedestal'].value, parameters['pedestalWidth'].value, parameters['luminosity'].value),
zorder=1,
linewidth=2,
label = f"SPE model fit \n gain : {gain[0] - gain[1]:.2f} < {gain[0]:.2f} < {gain[0] + gain[2]:.2f} ADC/pe, pvalue = {Statistics.chi2_pvalue(ndof,fit.fval)},\n likelihood = {fit.fval:.2f}")
label = f"SPE model fit \n gain : {gain[0] - gain[1]:.2f} < {gain[0]:.2f} < {gain[0] + gain[2]:.2f} ADC/pe,\n pvalue = {Statistics.chi2_pvalue(ndof,fit.fval)},\n likelihood = {fit.fval:.2f}")
ax.set_xlabel("Charge (ADC)", size=15)
ax.set_ylabel("Events", size=15)
ax.set_title(f"SPE fit pixel {it} with pixel_id : {pixels_id}")
ax.legend(fontsize=15)
ax.set_xlim([parameters['pedestal'].value - 6 * parameters['pedestalWidth'].value, None])
ax.legend(fontsize=18)
os.makedirs(kwargs.get('figpath'),exist_ok = True)
fig.savefig(f"{kwargs.get('figpath')}/fit_SPE_pixel{pixels_id}.pdf")
fig.clf()
Expand Down Expand Up @@ -503,17 +504,18 @@ def _run_obs(self,pixel,prescan = False,**kwargs) :


if kwargs.get('figpath',0) != 0 :
fig,ax = plt.subplots(1,1,figsize=(8, 6))
fig,ax = plt.subplots(1,1,figsize=(8, 8))
ax.errorbar(self.charge[pixel],self.histo[pixel],np.sqrt(self.histo[pixel]),zorder=0,fmt=".",label = "data")
ax.plot(self.charge[pixel],
np.trapz(self.histo[pixel],self.charge[pixel])*MPE2(self.charge[pixel],self.__pp.value,self.__resolution.value,self.__mean.value,self.__n.value,self.pedestal.value,self.__pedestalWidth.value,self.__luminosity.value),
zorder=1,
linewidth=2,
label = f"SPE model fit \n gain : {self.__gain[pixel,0] - self.__gain[pixel,1]:.2f} < {self.__gain[pixel,0]:.2f} < {self.__gain[pixel,0] + self.__gain[pixel,2]:.2f} ADC/pe, pvalue = {Statistics.chi2_pvalue(ndof,fit.fval)},\n likelihood = {fit.fval:.2f}")
label = f"SPE model fit \n gain : {self.__gain[pixel,0] - self.__gain[pixel,1]:.2f} < {self.__gain[pixel,0]:.2f} < {self.__gain[pixel,0] + self.__gain[pixel,2]:.2f} ADC/pe,\n pvalue = {Statistics.chi2_pvalue(ndof,fit.fval)},\n likelihood = {fit.fval:.2f}")
ax.set_xlabel("Charge (ADC)", size=15)
ax.set_ylabel("Events", size=15)
ax.set_title(f"SPE fit pixel : {pixel} (pixel id : {self.pixels_id[pixel]})")
ax.legend(fontsize=15)
ax.set_xlim([self.pedestal.value - 6 * self.pedestalWidth.value, None])
ax.legend(fontsize=18)
os.makedirs(kwargs.get('figpath'),exist_ok = True)
fig.savefig(f"{kwargs.get('figpath')}/fit_SPE_pixel{self.pixels_id[pixel]}.pdf")
fig.clf()
Expand Down Expand Up @@ -571,7 +573,7 @@ def _update_parameters_prefit_static(cls,it : int, parameters : Parameters, char
log.debug(f"pedestalWidth updated : {pedestalWidth}")
try :
coeff,var_matrix = NectarGainSPE._get_mean_gaussian_fit(charge,histo,f'{it}_nominal')
if coeff[1] - pedestal.value < 0 : raise Exception("mean gaussian fit not good")
if (coeff[1] - pedestal.value < 0) or ((coeff[1] - coeff[2]) - pedestal.max < 0) : raise Exception("mean gaussian fit not good")
mean = parameters['mean']
mean.value = coeff[1] - pedestal.value
mean.min = (coeff[1] - coeff[2]) - pedestal.max
Expand Down Expand Up @@ -785,7 +787,7 @@ def run(self,pixel : int = None,multiproc = False, **kwargs):
super().run(pixel,multiproc,**kwargs)

def _run_obs(self,pixel,prescan = False,**kwargs) :
if self.__nectarGainSPEresult[pixel]['is_valid'].value :
if self.__nectarGainSPEresult[pixel]['is_valid'] :
kwargs['pixel_id'] = self.pixels_id[pixel]
super()._run_obs(pixel,prescan,**kwargs)
else :
Expand Down
7 changes: 5 additions & 2 deletions src/nectarchain/calibration/container/charge.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,7 @@
from numba import guvectorize, float64, int64, bool_

from .waveforms import WaveformsContainer,WaveformsContainers
from .utils import CtaPipeExtractor



Expand Down Expand Up @@ -131,6 +132,7 @@ def __init__(self,charge_hg,charge_lg,peak_hg,peak_lg,run_number,pixels_id,neven
self.event_id = np.zeros((self.nevents),dtype = np.uint16)
self.trig_pattern_all = np.zeros((self.nevents,self.CAMERA.n_pixels,4),dtype = bool)


@classmethod
def from_waveforms(cls,waveformContainer : WaveformsContainer,method : str = "FullWaveformSum",**kwargs) :
""" create a new ChargeContainer from a WaveformsContainer
Expand Down Expand Up @@ -299,11 +301,12 @@ def compute_charge(waveformContainer : WaveformsContainer,channel : int,method :

log.debug(f"Extracting charges with method {method} and extractor_kwargs {extractor_kwargs}")
ImageExtractor = eval(method)(waveformContainer.subarray,**extractor_kwargs)

if channel == constants.HIGH_GAIN:
out = np.array([ImageExtractor(waveformContainer.wfs_hg[i],waveformContainer.TEL_ID,channel) for i in range(len(waveformContainer.wfs_hg))]).transpose(1,0,2)
out = np.array([CtaPipeExtractor.get_image_peak_time(ImageExtractor(waveformContainer.wfs_hg[i],waveformContainer.TEL_ID,channel,waveformContainer.broken_pixels_hg)) for i in range(len(waveformContainer.wfs_hg))]).transpose(1,0,2)
return out[0],out[1]
elif channel == constants.LOW_GAIN:
out = np.array([ImageExtractor(waveformContainer.wfs_lg[i],waveformContainer.TEL_ID,channel) for i in range(len(waveformContainer.wfs_lg))]).transpose(1,0,2)
out = np.array([CtaPipeExtractor.get_image_peak_time(ImageExtractor(waveformContainer.wfs_lg[i],waveformContainer.TEL_ID,channel,waveformContainer.broken_pixels_lg)) for i in range(len(waveformContainer.wfs_lg))]).transpose(1,0,2)
return out[0],out[1]
else :
raise ArgumentError(f"channel must be {constants.LOW_GAIN} or {constants.HIGH_GAIN}")
Expand Down
5 changes: 5 additions & 0 deletions src/nectarchain/calibration/container/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,8 @@
from pathlib import Path
from typing import List,Tuple

from ctapipe.containers import DL1CameraContainer


import logging
logging.basicConfig(format='%(asctime)s %(name)s %(levelname)s %(message)s')
Expand Down Expand Up @@ -180,3 +182,6 @@ def chainEventSource(list : list,max_events : int = None) : #useless with ctapip
else :
return ChainGenerator.chain(list[0],ChainGenerator.chainEventSource(list[1:]))

class CtaPipeExtractor():
def get_image_peak_time(cameraContainer : DL1CameraContainer) :
return cameraContainer.image, cameraContainer.peak_time
51 changes: 43 additions & 8 deletions src/nectarchain/calibration/container/waveforms.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,7 @@ def __new__(cls,*args,**kwargs) :
obj = object.__new__(cls)
return obj

def __init__(self,run_number : int,max_events : int = None,nevents : int = -1,run_file = None):
def __init__(self,run_number : int,max_events : int = None,nevents : int = -1,run_file = None, init_arrays : bool = False):
"""construtor
Args:
Expand All @@ -52,7 +52,9 @@ def __init__(self,run_number : int,max_events : int = None,nevents : int = -1,ru
"""

self.__run_number = run_number
#gerer ici le fait de traiter plusieurs fichiers ou simplement 1 par 1
self.__run_file = run_file
self.__max_events = max_events

self.__reader = WaveformsContainer.load_run(run_number,max_events,run_file = run_file)

#from reader members
Expand All @@ -68,12 +70,20 @@ def __init__(self,run_number : int,max_events : int = None,nevents : int = -1,ru
#run properties
if nevents != -1 :
self.__nevents = nevents if max_events is None else min(max_events,nevents) #self.check_events()
self.__reader = None
else :
self.__nevents = self.check_events()
#reload file (bc check_events has drained reader generator)
self.__reader = WaveformsContainer.load_run(run_number,max_events,run_file = run_file)

log.info(f"N_events : {self.nevents}")

if init_arrays :
self.__init_arrays()

def __init_arrays(self,**kwargs) :
log.debug('creation of the EventSource reader')
self.__reader = WaveformsContainer.load_run(self.__run_number,self.__max_events,run_file = self.__run_file)

log.debug("create wfs, ucts, event properties and triger pattern arrays")
#define zeros members which will be filled therafter
self.wfs_hg = np.zeros((self.nevents,self.npixels,self.nsamples),dtype = np.uint16)
self.wfs_lg = np.zeros((self.nevents,self.npixels,self.nsamples),dtype = np.uint16)
Expand All @@ -86,6 +96,14 @@ def __init__(self,run_number : int,max_events : int = None,nevents : int = -1,ru
#self.trig_pattern = np.zeros((self.nevents,self.npixels),dtype = bool)
#self.multiplicity = np.zeros((self.nevents,self.npixels),dtype = np.uint16)

self.__broken_pixels_hg = np.zeros((self.npixels),dtype = bool)
self.__broken_pixels_lg = np.zeros((self.npixels),dtype = bool)


def __compute_broken_pixels(self,**kwargs) :
log.warning("computation of broken pixels is not yet implemented")
self.__broken_pixels_hg = np.zeros((self.npixels),dtype = bool)
self.__broken_pixels_lg = np.zeros((self.npixels),dtype = bool)

@staticmethod
def load_run(run_number : int,max_events : int = None, run_file = None) :
Expand All @@ -98,8 +116,8 @@ def load_run(run_number : int,max_events : int = None, run_file = None) :
Returns:
List[ctapipe_io_nectarcam.NectarCAMEventSource]: List of EventSource for each run files
"""
generic_filename,filenames = DataManagement.findrun(run_number)
if run_file is None :
generic_filename,_ = DataManagement.findrun(run_number)
log.info(f"{str(generic_filename)} will be loaded")
eventsource = NectarCAMEventSource(input_url=generic_filename,max_events=max_events)
else :
Expand Down Expand Up @@ -135,6 +153,9 @@ def load_wfs(self,compute_trigger_patern = False):
Args:
compute_trigger_patern (bool, optional): To recompute on our side the trigger patern. Defaults to False.
"""
if not(hasattr(self, "wfs_hg")) :
self.__init_arrays()

wfs_hg_tmp=np.zeros((self.npixels,self.nsamples),dtype = np.uint16)
wfs_lg_tmp=np.zeros((self.npixels,self.nsamples),dtype = np.uint16)

Expand All @@ -159,7 +180,7 @@ def load_wfs(self,compute_trigger_patern = False):
self.wfs_hg[i] = wfs_hg_tmp
self.wfs_lg[i] = wfs_lg_tmp


self.__compute_broken_pixels()

#if compute_trigger_patern and np.max(self.trig_pattern) == 0:
# self.compute_trigger_patern()
Expand Down Expand Up @@ -262,6 +283,8 @@ def load(path : str) :
table_trigger = hdul[4].data
cls.trig_pattern_all = table_trigger["trig_pattern_all"]

cls.__compute_broken_pixels()

return cls


Expand Down Expand Up @@ -345,6 +368,13 @@ def select_waveforms_lg(self,pixel_id : np.ndarray) :
res = res.transpose(res.shape[1],res.shape[0],res.shape[2])
return res


@property
def _run_file(self) : return self.__run_file

@property
def _max_events(self) : return self.__max_events

@property
def reader(self) : return self.__reader

Expand All @@ -369,7 +399,12 @@ def nevents(self) : return self.__nevents
@property
def run_number(self) : return self.__run_number

@property
def broken_pixels_hg(self) : return self.__broken_pixels_hg

@property
def broken_pixels_lg(self) : return self.__broken_pixels_lg

#physical properties
@property
def multiplicity(self) : return np.uint16(np.count_nonzero(self.trig_pattern,axis = 1))
Expand All @@ -395,7 +430,7 @@ def __new__(cls,*args,**kwargs) :
obj = object.__new__(cls)
return obj

def __init__(self,run_number : int,max_events : int = None) :
def __init__(self,run_number : int,max_events : int = None, init_arrays : bool = False) :
"""initialize the waveformsContainer list inside the main object
Args:
Expand All @@ -407,7 +442,7 @@ def __init__(self,run_number : int,max_events : int = None) :
self.waveformsContainer = []
self.__nWaveformsContainer = 0
for i,file in enumerate(filenames) :
self.waveformsContainer.append(WaveformsContainer(run_number,max_events=max_events,run_file=file))
self.waveformsContainer.append(WaveformsContainer(run_number,max_events=max_events,run_file=file, init_arrays= init_arrays))
self.__nWaveformsContainer += 1
if not(max_events is None) : max_events -= self.waveformsContainer[i].nevents
log.info(f'WaveformsContainer number {i} is created')
Expand Down
Loading

0 comments on commit cdded69

Please sign in to comment.