Skip to content

Commit

Permalink
Added possible_paths.py to example scripts: Provides information abou…
Browse files Browse the repository at this point in the history
…t all functions/paths which reach specified target functions.
  • Loading branch information
Xenomega committed Feb 22, 2019
1 parent 7e75f7d commit 9edf5ad
Showing 1 changed file with 192 additions and 0 deletions.
192 changes: 192 additions & 0 deletions examples/scripts/possible_paths.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,192 @@
import os
import argparse
from slither import Slither


def resolve_function(contract_name, function_name):
"""
Resolves a function instance, given a contract name and function.
:param contract_name: The name of the contract the function is declared in.
:param function_name: The name of the function to resolve.
:return: Returns the resolved function, raises an exception otherwise.
"""
# Obtain the target contract
contract = slither.get_contract_from_name(contract_name)

# Verify the contract was resolved successfully
if contract is None:
raise ValueError(f"Could not resolve target contract: {contract_name}")

# Obtain the target function
target_function = next((function for function in contract.functions if function.name == function_name), None)

# Verify we have resolved the function specified.
if target_function is None:
raise ValueError(f"Could not resolve target function: {contract_name}.{function_name}")

# Add the resolved function to the new list.
return target_function


def resolve_functions(functions):
"""
Resolves the provided function descriptors.
:param functions: A list of tuples (contract_name, function_name) or str (of form "ContractName.FunctionName")
to resolve into function objects.
:return: Returns a list of resolved functions.
"""
# Create the resolved list.
resolved = []

# Verify that the provided argument is a list.
if not isinstance(functions, list):
raise ValueError("Provided functions to resolve must be a list type.")

# Loop for each item in the list.
for item in functions:
if isinstance(item, str):
# If the item is a single string, we assume it is of form 'ContractName.FunctionName'.
parts = item.split('.')
if len(parts) < 2:
raise ValueError("Provided string descriptor must be of form 'ContractName.FunctionName'")
resolved.append(resolve_function(parts[0], parts[1]))
elif isinstance(item, tuple):
# If the item is a tuple, it should be a 2-tuple providing contract and function names.
if len(item) != 2:
raise ValueError("Provided tuple descriptor must provide a contract and function name.")
resolved.append(resolve_function(item[0], item[1]))
else:
raise ValueError(f"Unexpected function descriptor type to resolve in list: {type(item)}")

# Return the resolved list.
return resolved


def all_function_definitions(function):
"""
Obtains a list of representing this function and any base definitions
:param function: The function to obtain all definitions at and beneath.
:return: Returns a list composed of the provided function definition and any base definitions.
"""
return [function] + [f for c in function.contract.inheritance
for f in c.functions_and_modifiers_not_inherited
if f.full_name == function.full_name]


def __find_target_paths(target_function, current_path=[]):

# Create our results list
results = set()

# Add our current function to the path.
current_path = [target_function] + current_path

# Obtain this target function and any base definitions.
all_target_functions = set(all_function_definitions(target_function))

# Look through all functions
for contract in slither.contracts:
for function in contract.functions_and_modifiers_not_inherited:

# If the function is already in our path, skip it.
if function in current_path:
continue

# Find all function calls in this function (except for low level)
called_functions = [f for (_, f) in function.high_level_calls + function.library_calls]
called_functions += function.internal_calls
called_functions = set(called_functions)

# If any of our target functions are reachable from this function, it's a result.
if all_target_functions.intersection(called_functions):
path_results = __find_target_paths(function, current_path.copy())
if path_results:
results = results.union(path_results)

# If this path is external accessible from this point, we add the current path to the list.
if target_function.visibility in ['public', 'external'] and len(current_path) > 1:
results.add(tuple(current_path))

return results


def find_target_paths(target_functions):
"""
Obtains all functions which can lead to any of the target functions being called.
:param target_functions: The functions we are interested in reaching.
:return: Returns a list of all functions which can reach any of the target_functions.
"""
# Create our results list
results = set()

# Loop for each target function
for target_function in target_functions:
results = results.union(__find_target_paths(target_function))

return results


def parse_args():
"""
Parse the underlying arguments for the program.
:return: Returns the arguments for the program.
"""
parser = argparse.ArgumentParser(description='PossiblePaths',
usage='possible_paths.py [--is-truffle] filename [contract.function targets]')

parser.add_argument('--is-truffle',
help='Indicates the filename refers to a truffle directory path.',
action='store_true',
default=False)

parser.add_argument('filename',
help='The filename of the contract or truffle directory to analyze.')

parser.add_argument('targets', nargs='+')

return parser.parse_args()


# ------------------------------
# PossiblePaths.py
# Usage: python3 possible_paths.py [--is-truffle] filename targets
# Example: python3 possible_paths.py contract.sol contract1.function1 contract2.function2 contract3.function3
# ------------------------------
# Parse all arguments
args = parse_args()

# If this is a truffle project, verify we have a valid build directory.
if args.is_truffle:
cwd = os.path.abspath(args.filename)
build_dir = os.path.join(cwd, "build", "contracts")
if not os.path.exists(build_dir):
raise FileNotFoundError(f"Could not find truffle build directory at '{build_dir}'")

# Perform slither analysis on the given filename
slither = Slither(args.filename, is_truffle=args.is_truffle)

targets = resolve_functions(args.targets)

# Print out all target functions.
print(f"Target functions:")
for target in targets:
print(f"-{target.contract.name}.{target.full_name}")
print("\n")

# Obtain all paths which reach the target functions.
reaching_paths = find_target_paths(targets)
reaching_functions = set([y for x in reaching_paths for y in x if y not in targets])

# Print out all function names which can reach the targets.
print(f"The following functions reach the specified targets:")
for function_desc in sorted([f"{f.contract.name}.{f.full_name}" for f in reaching_functions]):
print(f"-{function_desc}")
print("\n")

# Format all function paths.
reaching_paths_str = [' -> '.join([f"{f.contract.name}.{f.full_name}" for f in reaching_path]) for reaching_path in reaching_paths]

# Print a sorted list of all function paths which can reach the targets.
print(f"The following paths reach the specified targets:")
for reaching_path in sorted(reaching_paths_str):
print(f"{reaching_path}\n")

0 comments on commit 9edf5ad

Please sign in to comment.