forked from intel-analytics/ipex-llm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add MiniCPM-V cpu example (intel-analytics#11975)
* Add MiniCPM-V cpu example * fix * fix * fix * fix
- Loading branch information
1 parent
4ec2e23
commit c434c81
Showing
3 changed files
with
202 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
101 changes: 101 additions & 0 deletions
101
python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm-v/README.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,101 @@ | ||
# MiniCPM-V | ||
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on MiniCPM-V models. For illustration purposes, we utilize the [openbmb/MiniCPM-V-2_6](https://huggingface.co/openbmb/MiniCPM-V-2_6) as a reference MiniCPM-V model. | ||
|
||
## 0. Requirements | ||
To run these examples with IPEX-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. | ||
|
||
## Example: Predict Tokens using `chat()` API | ||
In the example [chat.py](./chat.py), we show a basic use case for a MiniCPM-V model to predict the next N tokens using `chat()` API, with IPEX-LLM INT4 optimizations. | ||
### 1. Install | ||
We suggest using conda to manage environment: | ||
|
||
On Linux: | ||
|
||
```bash | ||
conda create -n llm python=3.11 | ||
conda activate llm | ||
|
||
# install ipex-llm with 'all' option | ||
pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu | ||
pip install torchvision==0.16.2 --index-url https://download.pytorch.org/whl/cpu | ||
pip install transformers==4.40.0 trl | ||
``` | ||
On Windows: | ||
|
||
```cmd | ||
conda create -n llm python=3.11 | ||
conda activate llm | ||
pip install --pre --upgrade ipex-llm[all] | ||
pip install torchvision==0.16.2 --index-url https://download.pytorch.org/whl/cpu | ||
pip install transformers==4.40.0 trl | ||
``` | ||
|
||
### 2. Run | ||
|
||
- chat without streaming mode: | ||
``` | ||
python ./chat.py --prompt 'What is in the image?' | ||
``` | ||
- chat in streaming mode: | ||
``` | ||
python ./chat.py --prompt 'What is in the image?' --stream | ||
``` | ||
|
||
> [!TIP] | ||
> For chatting in streaming mode, it is recommended to set the environment variable `PYTHONUNBUFFERED=1`. | ||
|
||
Arguments info: | ||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the MiniCPM-V model (e.g. `openbmb/MiniCPM-V-2_6`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openbmb/MiniCPM-V-2_6'`. | ||
- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`. | ||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`. | ||
- `--stream`: flag to chat in streaming mode | ||
|
||
> **Note**: When loading the model in 4-bit, IPEX-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference. | ||
> | ||
> Please select the appropriate size of the MiniCPM model based on the capabilities of your machine. | ||
#### 2.1 Client | ||
On client Windows machine, it is recommended to run directly with full utilization of all cores: | ||
```cmd | ||
python ./chat.py | ||
``` | ||
|
||
#### 2.2 Server | ||
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket. | ||
|
||
E.g. on Linux, | ||
```bash | ||
# set IPEX-LLM env variables | ||
source ipex-llm-init | ||
|
||
# e.g. for a server with 48 cores per socket | ||
export OMP_NUM_THREADS=48 | ||
numactl -C 0-47 -m 0 python ./chat.py | ||
``` | ||
|
||
#### 2.3 Sample Output | ||
#### [openbmb/MiniCPM-V-2_6](https://huggingface.co/openbmb/MiniCPM-V-2_6) | ||
```log | ||
Inference time: xxxx s | ||
-------------------- Input Image -------------------- | ||
http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg | ||
-------------------- Input Prompt -------------------- | ||
What is in the image? | ||
-------------------- Chat Output -------------------- | ||
The image features a young child holding a white teddy bear dressed in pink. The background includes some red flowers and what appears to be a stone wall. | ||
``` | ||
|
||
```log | ||
-------------------- Input Image -------------------- | ||
http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg | ||
-------------------- Input Prompt -------------------- | ||
图片里有什么? | ||
-------------------- Stream Chat Output -------------------- | ||
图片中有一个小女孩,她手里拿着一个穿着粉色裙子的白色小熊玩偶。背景中有红色花朵和石头结构,可能是一个花园或庭院。 | ||
``` | ||
|
||
The sample input image is (which is fetched from [COCO dataset](https://cocodataset.org/#explore?id=264959)): | ||
|
||
<a href="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg"><img width=400px src="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg" ></a> |
100 changes: 100 additions & 0 deletions
100
python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm-v/chat.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,100 @@ | ||
# | ||
# Copyright 2016 The BigDL Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
|
||
|
||
import os | ||
import time | ||
import argparse | ||
import requests | ||
import torch | ||
from PIL import Image | ||
from ipex_llm.transformers import AutoModel | ||
from transformers import AutoTokenizer | ||
|
||
|
||
if __name__ == '__main__': | ||
parser = argparse.ArgumentParser(description='Predict Tokens using `chat()` API for MiniCPM-V model') | ||
parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM-V-2_6", | ||
help='The huggingface repo id for the MiniCPM-V model to be downloaded' | ||
', or the path to the huggingface checkpoint folder') | ||
parser.add_argument('--image-url-or-path', type=str, | ||
default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg', | ||
help='The URL or path to the image to infer') | ||
parser.add_argument('--prompt', type=str, default="What is in the image?", | ||
help='Prompt to infer') | ||
parser.add_argument('--stream', action='store_true', | ||
help='Whether to chat in streaming mode') | ||
|
||
args = parser.parse_args() | ||
model_path = args.repo_id_or_model_path | ||
image_path = args.image_url_or_path | ||
|
||
# Load model in 4 bit, | ||
# which convert the relevant layers in the model into INT4 format | ||
model = AutoModel.from_pretrained(model_path, | ||
load_in_low_bit="sym_int4", | ||
optimize_model=True, | ||
trust_remote_code=True, | ||
use_cache=True, | ||
torch_dtype=torch.float32, | ||
modules_to_not_convert=["vpm", "resampler"]) | ||
|
||
# Load tokenizer | ||
tokenizer = AutoTokenizer.from_pretrained(model_path, | ||
trust_remote_code=True) | ||
model.eval() | ||
|
||
query = args.prompt | ||
if os.path.exists(image_path): | ||
image = Image.open(image_path).convert('RGB') | ||
else: | ||
image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB') | ||
|
||
# Generate predicted tokens | ||
# here the prompt tuning refers to https://huggingface.co/openbmb/MiniCPM-V-2_6/blob/main/README.md | ||
msgs = [{'role': 'user', 'content': [image, args.prompt]}] | ||
|
||
if args.stream: | ||
res = model.chat( | ||
image=None, | ||
msgs=msgs, | ||
tokenizer=tokenizer, | ||
stream=True | ||
) | ||
|
||
print('-'*20, 'Input Image', '-'*20) | ||
print(image_path) | ||
print('-'*20, 'Input Prompt', '-'*20) | ||
print(args.prompt) | ||
print('-'*20, 'Stream Chat Output', '-'*20) | ||
for new_text in res: | ||
print(new_text, flush=True, end='') | ||
else: | ||
st = time.time() | ||
res = model.chat( | ||
image=None, | ||
msgs=msgs, | ||
tokenizer=tokenizer, | ||
) | ||
end = time.time() | ||
|
||
print(f'Inference time: {end-st} s') | ||
print('-'*20, 'Input Image', '-'*20) | ||
print(image_path) | ||
print('-'*20, 'Input Prompt', '-'*20) | ||
print(args.prompt) | ||
print('-'*20, 'Chat Output', '-'*20) | ||
print(res) |