-
Notifications
You must be signed in to change notification settings - Fork 19
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
86 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,14 @@ | ||
#----------# | ||
# Data I/O: | ||
|
||
data_file: "/path/to/crab/tra/file" # full path | ||
ori_file: "/path/to/ori/file" | ||
unbinned_output: 'fits' # 'fits' or 'hdf5' | ||
time_bins: 3600 # time bin size in seconds. Takes int or list of bin edges. | ||
energy_bins: [100., 158.489, 251.189, 398.107, 630.957, 1000., 1584.89, 2511.89, 3981.07, 6309.57, 10000.] # Takes list. Needs to match response. | ||
phi_pix_size: 5 # binning of Compton scattering angle [deg] | ||
nside: 8 # healpix binning of psi chi local | ||
scheme: 'ring' # healpix binning of psi chi local | ||
tmin: 00.0 # Min time cut in seconds. | ||
tmax: 100.0 # Max time cut in seconds. | ||
#----------# |
Binary file not shown.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,72 @@ | ||
from cosipy import COSILike, test_data, BinnedData | ||
from cosipy.spacecraftfile import SpacecraftFile | ||
import astropy.units as u | ||
import numpy as np | ||
from threeML import Band, PointSource, Model, JointLikelihood, DataList | ||
from astromodels import Parameter | ||
|
||
data_path = test_data.path | ||
|
||
sc_orientation = SpacecraftFile.parse_from_file(data_path / "20280301_2s.ori") | ||
dr = str(data_path / "test_full_detector_response.h5") # path to detector response | ||
|
||
data = BinnedData(data_path / "test_spectral_fit.yaml") | ||
background = BinnedData(data_path / "test_spectral_fit.yaml") | ||
|
||
data.load_binned_data_from_hdf5(binned_data=data_path / "test_spectral_fit_data.h5") | ||
background.load_binned_data_from_hdf5(binned_data=data_path / "test_spectral_fit_background.h5") | ||
|
||
bkg_par = Parameter("background_cosi", # background parameter | ||
1, # initial value of parameter | ||
min_value=0, # minimum value of parameter | ||
max_value=5, # maximum value of parameter | ||
delta=0.05, # initial step used by fitting engine | ||
desc="Background parameter for cosi") | ||
|
||
l = 50 | ||
b = -45 | ||
|
||
alpha = -1 | ||
beta = -2 | ||
xp = 500. * u.keV | ||
piv = 500. * u.keV | ||
K = 1 / u.cm / u.cm / u.s / u.keV | ||
|
||
spectrum = Band() | ||
|
||
spectrum.alpha.value = alpha | ||
spectrum.beta.value = beta | ||
spectrum.xp.value = xp.value | ||
spectrum.K.value = K.value | ||
spectrum.piv.value = piv.value | ||
|
||
spectrum.xp.unit = xp.unit | ||
spectrum.K.unit = K.unit | ||
spectrum.piv.unit = piv.unit | ||
|
||
source = PointSource("source", # Name of source (arbitrary, but needs to be unique) | ||
l = l, # Longitude (deg) | ||
b = b, # Latitude (deg) | ||
spectral_shape = spectrum) # Spectral model | ||
|
||
model = Model(source) | ||
|
||
def test_point_source_spectral_fit(): | ||
|
||
cosi = COSILike("cosi", # COSI 3ML plugin | ||
dr = dr, # detector response | ||
data = data.binned_data.project('Em', 'Phi', 'PsiChi'), # data (source+background) | ||
bkg = background.binned_data.project('Em', 'Phi', 'PsiChi'), # background model | ||
sc_orientation = sc_orientation, # spacecraft orientation | ||
nuisance_param = bkg_par) # background parameter | ||
|
||
plugins = DataList(cosi) | ||
|
||
like = JointLikelihood(model, plugins, verbose = False) | ||
|
||
like.fit() | ||
|
||
assert np.allclose([source.spectrum.main.Band.K.value, source.spectrum.main.Band.alpha.value, source.spectrum.main.Band.beta.value, source.spectrum.main.Band.xp.value, bkg_par.value], | ||
[1.0761685423819567, -1.0986905318048805, -2.2992600319562753, 449.8988239195967, 1.0]) | ||
|
||
assert np.allclose([cosi.get_log_like()], [337.17196587486285]) |