Computes the variance.
The population variance (biased sample variance) is defined as
and the unbiased sample variance is defined as
where x_0, x_1,...,x_{N-1}
are individual data values and N
is the total number of values in the data set.
$ npm install compute-variance
For use in the browser, use browserify.
var variance = require( 'compute-variance' );
Computes the variance. x
may be either an array
, typed array
, or matrix
.
var data, s2;
data = [ 2, 4, 5, 3, 4, 3, 1, 5, 6, 9 ];
s2 = variance( data );
// returns 5.067
data = new Int8Array( data );
s2 = variance( data );
// returns 5.067
For non-numeric arrays
, provide an accessor function
for accessing numeric array
values.
var data = [
{'x':2},
{'x':4},
{'x':5},
{'x':3},
{'x':4},
{'x':3},
{'x':1},
{'x':5},
{'x':6},
{'x':9}
];
function getValue( d ) {
return d.x;
}
var s2 = variance( data, {
'accessor': getValue
});
// returns 5.067
By default, the function calculates the unbiased sample variance. To calculate the population variance (or a biased sample variance), set the bias
option to true
.
var data = [ 2, 4, 5, 3, 4, 3, 1, 5, 6, 9 ];
var sigma2 = variance( data, {
'bias': true
});
// returns 4.56
If provided a matrix
, the function accepts the following additional options
:
- dim: dimension along which to compute the variance. Default:
2
(along the columns). - dtype: output
matrix
data type. Default:float64
.
By default, the function computes the variance along the columns (dim=2
).
var matrix = require( 'dstructs-matrix' ),
data,
mat,
s2,
i;
data = new Int8Array( 25 );
for ( i = 0; i < data.length; i++ ) {
data[ i ] = i;
}
mat = matrix( data, [5,5], 'int8' );
/*
[ 0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19
20 21 22 23 24 ]
*/
s2 = variance( mat );
/*
[ 2.5
2.5
2.5
2.5
2.5 ]
*/
To compute the variance along the rows, set the dim
option to 1
.
s2 = variance( mat, {
'dim': 1
});
/*
[ 62.5, 62.5, 62.5, 62.5, 62.5 ]
*/
By default, the output matrix
data type is float64
. To specify a different output data type, set the dtype
option.
s2 = variance( mat, {
'dim': 1,
'dtype': 'uint8'
});
/*
[ 62.5, 62.5, 62.5, 62.5, 62.5 ]
*/
var dtype = s2.dtype;
// returns 'uint8'
If provided a matrix
having either dimension equal to 1
, the function treats the matrix
as a typed array
and returns a numeric
value.
data = [ 2, 4, 5, 3, 4, 3, 1, 5, 6, 9 ];
// Row vector:
mat = matrix( new Int8Array( data ), [1,10], 'int8' );
s2 = variance( mat );
// returns 5.067
// Column vector:
mat = matrix( new Int8Array( data ), [10,1], 'int8' );
s2 = variance( mat );
// returns 5.067
If provided an empty array
, typed array
, or matrix
, the function returns null
.
s2 = variance( [] );
// returns null
s2 = variance( new Int8Array( [] ) );
// returns null
s2 = variance( matrix( [0,0] ) );
// returns null
s2 = variance( matrix( [0,10] ) );
// returns null
s2 = variance( matrix( [10,0] ) );
// returns null
var matrix = require( 'dstructs-matrix' ),
variance = require( 'compute-variance' );
var data,
mat,
s2,
i;
// Plain arrays...
var data = new Array( 100 );
for ( var i = 0; i < data.length; i++ ) {
data[ i ] = Math.round( Math.random() * 10 + 1 );
}
s2 = variance( data );
// Object arrays (accessors)...
function getValue( d ) {
return d.x;
}
for ( i = 0; i < data.length; i++ ) {
data[ i ] = {
'x': data[ i ]
};
}
s2 = variance( data, {
'accessor': getValue
});
// Typed arrays...
data = new Int32Array( 100 );
for ( i = 0; i < data.length; i++ ) {
data[ i ] = Math.round( Math.random() * 10 + 1 );
}
s2 = variance( data );
// Matrices (along rows)...
mat = matrix( data, [10,10], 'int32' );
s2 = variance( mat, {
'dim': 1
});
// Matrices (along columns)...
s2 = variance( mat, {
'dim': 2
});
// Matrices (custom output data type)...
s2 = variance( mat, {
'dtype': 'uint8'
});
To run the example code from the top-level application directory,
$ node ./examples/index.js
Unit tests use the Mocha test framework with Chai assertions. To run the tests, execute the following command in the top-level application directory:
$ make test
All new feature development should have corresponding unit tests to validate correct functionality.
This repository uses Istanbul as its code coverage tool. To generate a test coverage report, execute the following command in the top-level application directory:
$ make test-cov
Istanbul creates a ./reports/coverage
directory. To access an HTML version of the report,
$ make view-cov
Copyright © 2014-2015. The Compute.io Authors.