-
Notifications
You must be signed in to change notification settings - Fork 43
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add evaluation scripts for experiments (#354)
* Add evaluation scripts for livecell experiments
- Loading branch information
Showing
2 changed files
with
224 additions
and
0 deletions.
There are no files selected for viewing
95 changes: 95 additions & 0 deletions
95
finetuning/livecell/experiments/run_experiment_evaluation.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,95 @@ | ||
import os | ||
import re | ||
import itertools | ||
import subprocess | ||
|
||
|
||
ROOT = "/scratch/usr/nimanwai" | ||
EXPERIMENT_ROOT = "/scratch/projects/nim00007/sam/experiments/new_models/test/" | ||
|
||
CMD = "python submit_experiment_evaluation.py " | ||
|
||
|
||
def run_eval_process(cmd): | ||
proc = subprocess.Popen(cmd) | ||
try: | ||
outs, errs = proc.communicate(timeout=60) | ||
except subprocess.TimeoutExpired: | ||
proc.terminate() | ||
outs, errs = proc.communicate() | ||
|
||
|
||
def for_vit_t(): | ||
checkpoint = os.path.join( | ||
ROOT, "experiments", "test", "micro-sam", "vit_t", "checkpoints", "vit_t", "livecell_sam", "best.pt" | ||
) | ||
experiment_folder = os.path.join(EXPERIMENT_ROOT, "vit_t") | ||
|
||
cmd = CMD + "-m vit_t " + f"-c {checkpoint} " + f"-e {experiment_folder}" | ||
print(f"Running the command: {cmd} \n") | ||
|
||
_cmd = re.split(r"\s", cmd) | ||
|
||
run_eval_process(_cmd) | ||
|
||
|
||
def for_n_objects(max_objects=45): | ||
ckpt_root = os.path.join(ROOT, "experiments", "micro-sam", "n_objects_per_batch") | ||
exp_root = os.path.join(EXPERIMENT_ROOT, "n_objects_per_batch") | ||
for i in range(1, max_objects+1): | ||
checkpoint = os.path.join(ckpt_root, f"{i}", "checkpoints", "vit_b", "livecell_sam", "best.pt") | ||
experiment_folder = os.path.join(exp_root, f"{i}") | ||
|
||
cmd = CMD + "-m vit_b " + f"-c {checkpoint} " + f"-e {experiment_folder}" | ||
print(f"Running the command: {cmd} \n") | ||
|
||
_cmd = re.split(r"\s", cmd) | ||
|
||
run_eval_process(_cmd) | ||
|
||
|
||
def for_freezing_backbones(): | ||
ckpt_root = os.path.join(ROOT, "experiments", "micro-sam", "partial-finetuning") | ||
exp_root = os.path.join(EXPERIMENT_ROOT, "partial-finetuning") | ||
|
||
# let's get all combinations need for the freezing backbone experiments | ||
backbone_combinations = ["image_encoder", "prompt_encoder", "mask_decoder"] | ||
|
||
all_combinations = [] | ||
for i in range(len(backbone_combinations)): | ||
_one_set = itertools.combinations(backbone_combinations, r=i) | ||
for _per_combination in _one_set: | ||
if len(_per_combination) == 0: | ||
all_combinations.append(None) | ||
else: | ||
all_combinations.append(list(_per_combination)) | ||
|
||
for _setup in all_combinations: | ||
if isinstance(_setup, list): | ||
checkpoint = os.path.join(ckpt_root, "freeze-") | ||
experiment_folder = os.path.join(exp_root, "freeze-") | ||
for _name in _setup: | ||
checkpoint += f"{_name}-" | ||
experiment_folder += f"{_name}-" | ||
checkpoint = checkpoint[:-1] | ||
experiment_folder = experiment_folder[:-1] | ||
else: | ||
checkpoint = os.path.join(ckpt_root, f"freeze-{_setup}") | ||
experiment_folder = os.path.join(exp_root, f"freeze-{_setup}") | ||
|
||
checkpoint = os.path.join(checkpoint, "checkpoints", "vit_b", "livecell_sam", "best.pt") | ||
|
||
cmd = CMD + "-m vit_b " + f"-c {checkpoint} " + f"-e {experiment_folder}" | ||
print(f"Running the command: {cmd} \n") | ||
|
||
_cmd = re.split(r"\s", cmd) | ||
|
||
run_eval_process(_cmd) | ||
|
||
|
||
def main(): | ||
for_freezing_backbones() | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
129 changes: 129 additions & 0 deletions
129
finetuning/livecell/experiments/submit_experiment_evaluation.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,129 @@ | ||
import os | ||
import re | ||
import shutil | ||
import argparse | ||
import subprocess | ||
from glob import glob | ||
from datetime import datetime | ||
|
||
|
||
def write_batch_script(env_name, out_path, inference_setup, checkpoint, model_type, experiment_folder, delay=None): | ||
"""Writing scripts with different fold-trainings for micro-sam evaluation | ||
""" | ||
batch_script = f"""#!/bin/bash | ||
#SBATCH -c 8 | ||
#SBATCH --mem 64G | ||
#SBATCH -t 2-00:00:00 | ||
#SBATCH -p grete:shared | ||
#SBATCH -G A100:1 | ||
#SBATCH -A gzz0001 | ||
#SBATCH --job-name={inference_setup} | ||
source ~/.bashrc | ||
mamba activate {env_name} \n""" | ||
|
||
if delay is not None: | ||
batch_script += f"sleep {delay} \n" | ||
|
||
# python script | ||
python_script = f"python ../evaluation/{inference_setup}.py " | ||
|
||
_op = out_path[:-3] + f"_{inference_setup}.sh" | ||
|
||
# add the finetuned checkpoint | ||
python_script += f"-c {checkpoint} " | ||
|
||
# name of the model configuration | ||
python_script += f"-m {model_type} " | ||
|
||
# experiment folder | ||
python_script += f"-e {experiment_folder} " | ||
|
||
# let's add the python script to the bash script | ||
batch_script += python_script | ||
|
||
with open(_op, "w") as f: | ||
f.write(batch_script) | ||
|
||
# we run the first prompt for iterative once starting with point, and then starting with box (below) | ||
if inference_setup == "iterative_prompting": | ||
batch_script += "--box " | ||
|
||
new_path = out_path[:-3] + f"_{inference_setup}_box.sh" | ||
with open(new_path, "w") as f: | ||
f.write(batch_script) | ||
|
||
|
||
def get_batch_script_names(tmp_folder): | ||
tmp_folder = os.path.expanduser(tmp_folder) | ||
os.makedirs(tmp_folder, exist_ok=True) | ||
|
||
script_name = "livecell-inference" | ||
|
||
dt = datetime.now().strftime("%Y_%m_%d_%H_%M_%S_%f") | ||
tmp_name = script_name + dt | ||
batch_script = os.path.join(tmp_folder, f"{tmp_name}.sh") | ||
|
||
return batch_script | ||
|
||
|
||
def submit_slurm(model_type, checkpoint, experiment_folder): | ||
"""Submit python script that needs gpus with given inputs on a slurm node. | ||
""" | ||
tmp_folder = "./gpu_jobs" | ||
|
||
# parameters to run the inference scripts | ||
environment_name = "sam" | ||
make_delay = "1m" # wait for precomputing the embeddings and later run inference scripts | ||
|
||
assert os.path.exists(checkpoint), checkpoint | ||
|
||
# now let's run the experiments | ||
all_setups = ["precompute_embeddings", "evaluate_amg", "evaluate_instance_segmentation", "iterative_prompting"] | ||
for current_setup in all_setups: | ||
write_batch_script( | ||
env_name=environment_name, | ||
out_path=get_batch_script_names(tmp_folder), | ||
inference_setup=current_setup, | ||
checkpoint=checkpoint, | ||
model_type=model_type, | ||
experiment_folder=experiment_folder, | ||
delay=None if current_setup == "precompute_embeddings" else make_delay | ||
) | ||
|
||
# the logic below automates the process of first running the precomputation of embeddings, and only then inference. | ||
job_id = [] | ||
for i, my_script in enumerate(sorted(glob(tmp_folder + "/*"))): | ||
cmd = ["sbatch", my_script] | ||
|
||
if i > 0: | ||
cmd.insert(1, f"--dependency=afterany:{job_id[0]}") | ||
|
||
cmd_out = subprocess.run(cmd, capture_output=True, text=True) | ||
print(cmd_out.stdout if len(cmd_out.stdout) > 1 else cmd_out.stderr) | ||
|
||
if i == 0: | ||
job_id.append(re.findall(r'\d+', cmd_out.stdout)[0]) | ||
|
||
|
||
def main(args): | ||
submit_slurm( | ||
model_type=args.model_type, | ||
checkpoint=args.checkpoint, | ||
experiment_folder=args.experiment_folder | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
try: | ||
shutil.rmtree("./gpu_jobs") | ||
except FileNotFoundError: | ||
pass | ||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument("-m", "--model_type", type=str, required=True) | ||
parser.add_argument("-c", "--checkpoint", type=str, required=True) | ||
parser.add_argument("-e", "--experiment_folder", type=str, required=True) | ||
args = parser.parse_args() | ||
|
||
main(args) |