forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Core] draft_model_runner: Implement prepare_inputs on GPU for advanc…
…e_step (vllm-project#6338) Signed-off-by: Alvant <[email protected]>
- Loading branch information
1 parent
a4fcb94
commit 92f1f6b
Showing
12 changed files
with
568 additions
and
130 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,131 @@ | ||
/* | ||
* The goal of this GPU kernel is to advance input tensors on the GPU directly | ||
* PR: https://github.com/vllm-project/vllm/pull/6338 | ||
* Current restrictions: | ||
* 1. Specialized for DraftModelRunner | ||
* 2. Supports flash_attn only | ||
*/ | ||
|
||
#include "advance_step.cuh" | ||
|
||
namespace prepare_inputs { | ||
|
||
// | ||
template <int const num_threads> | ||
__global__ void advance_step_kernel(int num_seqs, int num_queries, | ||
int block_size, long* input_tokens_ptr, | ||
long const* sampled_token_ids_ptr, | ||
long* input_positions_ptr, | ||
int* seq_lens_ptr, long* slot_mapping_ptr, | ||
int const* block_tables_ptr, | ||
int64_t const block_tables_stride) { | ||
int num_query_blocks = div_ceil(num_queries, num_threads); | ||
|
||
if (blockIdx.x >= num_query_blocks) { | ||
return; | ||
} | ||
|
||
int cur_query_id = blockIdx.x * num_threads + threadIdx.x; | ||
|
||
if (cur_query_id >= num_queries) { | ||
return; | ||
} | ||
|
||
// Update input_tokens | ||
input_tokens_ptr[cur_query_id] = sampled_token_ids_ptr[cur_query_id]; | ||
|
||
int seq_len = seq_lens_ptr[cur_query_id]; | ||
int next_seq_len = seq_len + 1; | ||
int next_input_pos = next_seq_len - 1; | ||
|
||
// Update seq_lens | ||
seq_lens_ptr[cur_query_id] = next_seq_len; | ||
// Update input_positions | ||
input_positions_ptr[cur_query_id] = next_input_pos; | ||
|
||
int const* seq_block_tables_ptr = | ||
block_tables_ptr + block_tables_stride * cur_query_id; | ||
|
||
int block_index = next_input_pos / block_size; | ||
int block_offset = next_input_pos % block_size; | ||
|
||
int slot_num = seq_block_tables_ptr[block_index] * block_size + block_offset; | ||
// Update slot_mapping | ||
slot_mapping_ptr[cur_query_id] = slot_num; | ||
} | ||
|
||
inline void verify_tensor(std::string const& name, torch::Tensor& t, | ||
int64_t const size_0, int64_t const size_1, | ||
c10::ScalarType const type) { | ||
bool size_0_cond = true; | ||
if (size_0 != -1) { | ||
size_0_cond = t.size(0) == size_0; | ||
} | ||
|
||
bool size_1_cond = true; | ||
if (size_1 != -1) { | ||
size_1_cond = t.size(1) == size_1; | ||
} | ||
|
||
bool is_contiguous = t.is_contiguous(); | ||
bool same_type = t.dtype() == type; | ||
|
||
bool pass = size_0_cond && size_1_cond && is_contiguous && same_type; | ||
if (!pass) { | ||
TORCH_CHECK(false, "tensor: name = ", name, ", shape = ", t.sizes(), | ||
" is_cont = ", t.is_contiguous(), ", type = ", t.dtype(), | ||
" is not as expected: shape = [", size_0, ", ", size_1, | ||
"], type = ", type); | ||
} | ||
} | ||
|
||
void advance_step(int num_seqs, int num_queries, int block_size, | ||
torch::Tensor& input_tokens, // type: long | ||
torch::Tensor& sampled_token_ids, // type: long | ||
torch::Tensor& input_positions, // type: long | ||
torch::Tensor& seq_lens, // type: int | ||
torch::Tensor& slot_mapping, // type: long | ||
torch::Tensor& block_tables) { // type: int | ||
|
||
if (logging) { | ||
printf("advance_step:\n"); | ||
printf(" num_seqs = %d\n", num_seqs); | ||
printf(" num_queries = %d\n", num_queries); | ||
printf(" block_size = %d\n", block_size); | ||
} | ||
// Verify all tensors | ||
verify_tensor("input_tokens", input_tokens, num_seqs, -1, at::kLong); | ||
verify_tensor("sampled_token_ids", sampled_token_ids, num_queries, 1, | ||
at::kLong); | ||
verify_tensor("input_positions", input_positions, num_seqs, -1, at::kLong); | ||
verify_tensor("seq_lens", seq_lens, num_seqs, -1, at::kInt); | ||
verify_tensor("slot_mapping", slot_mapping, num_seqs, -1, at::kLong); | ||
verify_tensor("block_tables", block_tables, num_seqs, -1, at::kInt); | ||
|
||
int dev = sampled_token_ids.get_device(); | ||
cudaStream_t stream = at::cuda::getCurrentCUDAStream(dev); | ||
|
||
int blocks; | ||
cudaDeviceGetAttribute(&blocks, cudaDevAttrMultiProcessorCount, dev); | ||
|
||
advance_step_kernel<max_threads><<<blocks, max_threads, 0, stream>>>( | ||
num_seqs, num_queries, block_size, | ||
reinterpret_cast<long*>(input_tokens.data_ptr()), | ||
reinterpret_cast<long const*>(sampled_token_ids.data_ptr()), | ||
reinterpret_cast<long*>(input_positions.data_ptr()), | ||
reinterpret_cast<int*>(seq_lens.data_ptr()), | ||
reinterpret_cast<long*>(slot_mapping.data_ptr()), | ||
reinterpret_cast<int const*>(block_tables.data_ptr()), | ||
block_tables.stride(0)); | ||
} | ||
|
||
} // namespace prepare_inputs | ||
|
||
void advance_step(int64_t num_seqs, int64_t num_queries, int64_t block_size, | ||
torch::Tensor& input_tokens, torch::Tensor& sampled_token_ids, | ||
torch::Tensor& input_positions, torch::Tensor& seq_lens, | ||
torch::Tensor& slot_mapping, torch::Tensor& block_tables) { | ||
prepare_inputs::advance_step(num_seqs, num_queries, block_size, input_tokens, | ||
sampled_token_ids, input_positions, seq_lens, | ||
slot_mapping, block_tables); | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,19 @@ | ||
#pragma once | ||
|
||
#include <torch/all.h> | ||
|
||
#include <ATen/cuda/CUDAContext.h> | ||
#include <c10/cuda/CUDAGuard.h> | ||
#include <cuda.h> | ||
#include <cuda_fp16.h> | ||
#include <cuda_runtime.h> | ||
#include <iostream> | ||
|
||
namespace prepare_inputs { | ||
|
||
static constexpr int max_threads = 256; | ||
static constexpr bool logging = false; | ||
|
||
constexpr int div_ceil(int a, int b) { return (a + b - 1) / b; } | ||
|
||
} // namespace prepare_inputs |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.