-
Notifications
You must be signed in to change notification settings - Fork 6.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
1861796
commit 7e941f9
Showing
2 changed files
with
26 additions
and
77 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,87 +1,36 @@ | ||
import json | ||
import os | ||
import yaml | ||
|
||
import folder_paths | ||
from comfy.sd import load_checkpoint | ||
import os.path as osp | ||
import re | ||
import torch | ||
from safetensors.torch import load_file, save_file | ||
from . import diffusers_convert | ||
import comfy.sd | ||
|
||
def first_file(path, filenames): | ||
for f in filenames: | ||
p = os.path.join(path, f) | ||
if os.path.exists(p): | ||
return p | ||
return None | ||
|
||
def load_diffusers(model_path, fp16=True, output_vae=True, output_clip=True, embedding_directory=None): | ||
diffusers_unet_conf = json.load(open(osp.join(model_path, "unet/config.json"))) | ||
diffusers_scheduler_conf = json.load(open(osp.join(model_path, "scheduler/scheduler_config.json"))) | ||
def load_diffusers(model_path, output_vae=True, output_clip=True, embedding_directory=None): | ||
diffusion_model_names = ["diffusion_pytorch_model.fp16.safetensors", "diffusion_pytorch_model.safetensors", "diffusion_pytorch_model.fp16.bin", "diffusion_pytorch_model.bin"] | ||
unet_path = first_file(os.path.join(model_path, "unet"), diffusion_model_names) | ||
vae_path = first_file(os.path.join(model_path, "vae"), diffusion_model_names) | ||
|
||
# magic | ||
v2 = diffusers_unet_conf["sample_size"] == 96 | ||
if 'prediction_type' in diffusers_scheduler_conf: | ||
v_pred = diffusers_scheduler_conf['prediction_type'] == 'v_prediction' | ||
text_encoder_model_names = ["model.fp16.safetensors", "model.safetensors", "pytorch_model.fp16.bin", "pytorch_model.bin"] | ||
text_encoder1_path = first_file(os.path.join(model_path, "text_encoder"), text_encoder_model_names) | ||
text_encoder2_path = first_file(os.path.join(model_path, "text_encoder_2"), text_encoder_model_names) | ||
|
||
if v2: | ||
if v_pred: | ||
config_path = folder_paths.get_full_path("configs", 'v2-inference-v.yaml') | ||
else: | ||
config_path = folder_paths.get_full_path("configs", 'v2-inference.yaml') | ||
else: | ||
config_path = folder_paths.get_full_path("configs", 'v1-inference.yaml') | ||
text_encoder_paths = [text_encoder1_path] | ||
if text_encoder2_path is not None: | ||
text_encoder_paths.append(text_encoder2_path) | ||
|
||
with open(config_path, 'r') as stream: | ||
config = yaml.safe_load(stream) | ||
unet = comfy.sd.load_unet(unet_path) | ||
|
||
model_config_params = config['model']['params'] | ||
clip_config = model_config_params['cond_stage_config'] | ||
scale_factor = model_config_params['scale_factor'] | ||
vae_config = model_config_params['first_stage_config'] | ||
vae_config['scale_factor'] = scale_factor | ||
model_config_params["unet_config"]["params"]["use_fp16"] = fp16 | ||
clip = None | ||
if output_clip: | ||
clip = comfy.sd.load_clip(text_encoder_paths, embedding_directory=embedding_directory) | ||
|
||
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.safetensors") | ||
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.safetensors") | ||
text_enc_path = osp.join(model_path, "text_encoder", "model.safetensors") | ||
vae = None | ||
if output_vae: | ||
vae = comfy.sd.VAE(ckpt_path=vae_path) | ||
|
||
# Load models from safetensors if it exists, if it doesn't pytorch | ||
if osp.exists(unet_path): | ||
unet_state_dict = load_file(unet_path, device="cpu") | ||
else: | ||
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.bin") | ||
unet_state_dict = torch.load(unet_path, map_location="cpu") | ||
|
||
if osp.exists(vae_path): | ||
vae_state_dict = load_file(vae_path, device="cpu") | ||
else: | ||
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.bin") | ||
vae_state_dict = torch.load(vae_path, map_location="cpu") | ||
|
||
if osp.exists(text_enc_path): | ||
text_enc_dict = load_file(text_enc_path, device="cpu") | ||
else: | ||
text_enc_path = osp.join(model_path, "text_encoder", "pytorch_model.bin") | ||
text_enc_dict = torch.load(text_enc_path, map_location="cpu") | ||
|
||
# Convert the UNet model | ||
unet_state_dict = diffusers_convert.convert_unet_state_dict(unet_state_dict) | ||
unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()} | ||
|
||
# Convert the VAE model | ||
vae_state_dict = diffusers_convert.convert_vae_state_dict(vae_state_dict) | ||
vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()} | ||
|
||
# Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper | ||
is_v20_model = "text_model.encoder.layers.22.layer_norm2.bias" in text_enc_dict | ||
|
||
if is_v20_model: | ||
# Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm | ||
text_enc_dict = {"transformer." + k: v for k, v in text_enc_dict.items()} | ||
text_enc_dict = diffusers_convert.convert_text_enc_state_dict_v20(text_enc_dict) | ||
text_enc_dict = {"cond_stage_model.model." + k: v for k, v in text_enc_dict.items()} | ||
else: | ||
text_enc_dict = diffusers_convert.convert_text_enc_state_dict(text_enc_dict) | ||
text_enc_dict = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()} | ||
|
||
# Put together new checkpoint | ||
sd = {**unet_state_dict, **vae_state_dict, **text_enc_dict} | ||
|
||
return load_checkpoint(embedding_directory=embedding_directory, state_dict=sd, config=config) | ||
return (unet, clip, vae) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters