-
Notifications
You must be signed in to change notification settings - Fork 3.8k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
coldata: operate on Nulls value, not reference #74592
coldata: operate on Nulls value, not reference #74592
Conversation
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Reviewed 12 of 12 files at r1, all commit messages.
Reviewable status: complete! 1 of 0 LGTMs obtained (waiting on @nvanbenschoten)
-- commits, line 2 at r1:
nit: s/col/coldata/
.
-- commits, line 6 at r1:
nit: no release note.
This commit changes `col.Vec.SetNulls` to accept a `Nulls` struct by value instead of by pointer. This lets us avoid a heap allocation on each call to `Nulls.Or`. Releaes note: None
e1ecea5
to
8c56129
Compare
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
TFTR!
bors r=yuzefovich
Reviewable status: complete! 0 of 0 LGTMs obtained (and 1 stale) (waiting on @yuzefovich)
Previously, yuzefovich (Yahor Yuzefovich) wrote…
nit:
s/col/coldata/
.
Done.
Previously, yuzefovich (Yahor Yuzefovich) wrote…
nit: no release note.
Done.
Build succeeded: |
74590: colexec: integrate flat, compact decimal datums r=nvanbenschoten a=nvanbenschoten Replaces #74369 and #57593. This PR picks up the following changes to `cockroachdb/apd`: - cockroachdb/apd#103 - cockroachdb/apd#104 - cockroachdb/apd#107 - cockroachdb/apd#108 - cockroachdb/apd#109 - cockroachdb/apd#110 - cockroachdb/apd#111 Release note (performance improvement): The memory representation of DECIMAL datums has been optimized to save space, avoid heap allocations, and eliminate indirection. This increases the speed of DECIMAL arithmetic and aggregation by up to 20% on large data sets. ---- At a high-level, those changes implement the "compact memory representation" for Decimals described in cockroachdb/apd#102 (comment) and later implemented in cockroachdb/apd#103. Compared to the approach on master, the approach in cockroachdb/apd#103 is a) faster, b) avoids indirection + heap allocation, c) smaller. Compared to the alternate approach in cockroachdb/apd#102, the approach in cockroachdb/apd#103 is a) [faster for most operations](cockroachdb/apd#102 (comment)), b) more usable because values can be safely copied, c) half the memory size (32 bytes per `Decimal`, vs. 64). The memory representation of the Decimal struct in this approach looks like: ```go type Decimal struct { Form int8 Negative bool Exponent int32 Coeff BigInt { _inner *big.Int // nil when value fits in _inline _inline [2]uint } } // sizeof = 32 ``` With a two-word inline array, any value that would fit in a 128-bit integer (i.e. decimals with a scale-adjusted absolute value up to 2^128 - 1) fit in `_inline`. The indirection through `_inner` is only used for values larger than this. Before this change, the memory representation of the `Decimal` struct looked like: ```go type Decimal struct { Form int64 Negative bool Exponent int32 Coeff big.Int { neg bool abs []big.Word { data uintptr ---------------. len int64 v cap int64 [uint, uint, ...] // sizeof = variable, but around cap = 4, so 32 bytes } } } // sizeof = 48 flat bytes + variable-length heap allocated array ``` ---- ## Performance impact ### Speedup on TPC-DS dataset The TPC-DS dataset is full of decimal columns, so it's a good playground to test this change. Unfortunately, the variance in the runtime performance of the TPC-DS queries themselves is high (many queries varied by 30-40% per attempt), so it was hard to get signal out of them. Instead, I imported the TPC-DS dataset with a scale factor of 10 and ran some custom aggregation queries against the largest table (`web_sales`, row count = 7,197,566): Queries ```sql # q1 select sum(ws_wholesale_cost + ws_ext_list_price) from web_sales; # q2 select sum(2 * ws_wholesale_cost + ws_ext_list_price) - max(4 * ws_ext_ship_cost), min(ws_net_profit) from web_sales; # q3 select max(ws_bill_customer_sk + ws_bill_cdemo_sk + ws_bill_hdemo_sk + ws_bill_addr_sk + ws_ship_customer_sk + ws_ship_cdemo_sk + ws_ship_hdemo_sk + ws_ship_addr_sk + ws_web_page_sk + ws_web_site_sk + ws_ship_mode_sk + ws_warehouse_sk + ws_promo_sk + ws_order_number + ws_quantity + ws_wholesale_cost + ws_list_price + ws_sales_price + ws_ext_discount_amt + ws_ext_sales_price + ws_ext_wholesale_cost + ws_ext_list_price + ws_ext_tax + ws_coupon_amt + ws_ext_ship_cost + ws_net_paid + ws_net_paid_inc_tax + ws_net_paid_inc_ship + ws_net_paid_inc_ship_tax + ws_net_profit) from web_sales; ``` Here's the difference in runtime of these three queries before and after this change on an `n2-standard-4` instance: ``` name old s/op new s/op delta TPC-DS/custom/q1 7.21 ± 3% 6.59 ± 0% -8.57% (p=0.000 n=10+10) TPC-DS/custom/q2 10.2 ± 0% 9.7 ± 3% -5.42% (p=0.000 n=10+10) TPC-DS/custom/q3 21.9 ± 1% 17.3 ± 0% -21.13% (p=0.000 n=10+10) ``` ### Heap allocation reduction in TPC-DS Part of the reason for this speedup was that it significantly reduces heap allocations because most decimal values are stored inline. We can see this in q3 from above. Before the change, a heap profile looks like: <img width="1751" alt="Screen Shot 2022-01-07 at 7 12 49 PM" src="https://user-images.githubusercontent.com/5438456/148625159-9ceb470a-0742-4f75-a533-530d9944143c.png"> After the change, a heap profile looks like: <img width="1749" alt="Screen Shot 2022-01-07 at 7 17 32 PM" src="https://user-images.githubusercontent.com/5438456/148625174-629f4b47-07cc-4ef6-8723-2e556f7fc00d.png"> _(the dominant source of heap allocations is now `coldata.(*Nulls).Or`. #74592 should help here)_ ### Heap allocation reduction in TPC-E On the read-only portion of the TPC-E (77% of the full workload, in terms of txn mix), this change has a significant impact on total heap allocations. Before the change, `math/big.nat.make` was responsible for **51.07%** of total heap allocations: <img width="1587" alt="Screen Shot 2021-12-31 at 8 01 00 PM" src="https://user-images.githubusercontent.com/5438456/147842722-965d649d-b29a-4f66-aa07-1b05e52e97af.png"> After the change, `math/big.nat.make` is responsible for only **1.1%** of total heap allocations: <img width="1580" alt="Screen Shot 2021-12-31 at 9 04 24 PM" src="https://user-images.githubusercontent.com/5438456/147842727-a881a5a3-d038-48bb-bd44-4ade665afe73.png"> That equates to roughly a **50%** reduction in heap allocations. ### Microbenchmarks ``` name old time/op new time/op delta Aggregator/MIN/ordered/decimal/groupSize=1/numInputRows=1024-10 65.6µs ± 2% 42.5µs ± 0% -35.15% (p=0.000 n=9+8) Aggregator/MIN/ordered/decimal/groupSize=2/numInputRows=1024-10 68.4µs ± 1% 48.4µs ± 1% -29.20% (p=0.000 n=9+10) Aggregator/MIN/ordered/decimal/groupSize=1/numInputRows=32768-10 1.65ms ± 1% 1.20ms ± 1% -27.31% (p=0.000 n=9+10) Aggregator/MIN/ordered/decimal/groupSize=1/numInputRows=1048576-10 51.4ms ± 1% 38.3ms ± 1% -25.59% (p=0.000 n=10+10) Aggregator/MIN/ordered/decimal/groupSize=1/numInputRows=32-10 12.5µs ± 1% 9.4µs ± 2% -24.72% (p=0.000 n=9+10) Aggregator/MIN/ordered/decimal/groupSize=2/numInputRows=32-10 12.5µs ± 1% 9.6µs ± 2% -23.24% (p=0.000 n=8+10) Aggregator/MIN/ordered/decimal/groupSize=1/numInputRows=1-10 10.5µs ± 1% 8.0µs ± 1% -23.22% (p=0.000 n=9+9) Aggregator/MIN/ordered/decimal/groupSize=32/numInputRows=32-10 12.4µs ± 1% 9.6µs ± 1% -22.70% (p=0.000 n=8+10) Aggregator/MIN/ordered/decimal/groupSize=1024/numInputRows=1024-10 60.5µs ± 1% 47.1µs ± 2% -22.24% (p=0.000 n=10+10) Aggregator/MIN/ordered/decimal/groupSize=128/numInputRows=1024-10 61.2µs ± 1% 47.7µs ± 1% -22.09% (p=0.000 n=9+10) Aggregator/MIN/ordered/decimal/groupSize=32/numInputRows=1024-10 62.3µs ± 1% 48.7µs ± 2% -21.91% (p=0.000 n=9+10) Aggregator/MIN/ordered/decimal/groupSize=2/numInputRows=32768-10 1.31ms ± 0% 1.03ms ± 1% -21.53% (p=0.000 n=9+10) Aggregator/MIN/hash/decimal/groupSize=1024/numInputRows=1024-10 82.3µs ± 1% 64.9µs ± 1% -21.12% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=128/numInputRows=1024-10 86.6µs ± 1% 68.5µs ± 1% -20.93% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=32/numInputRows=1024-10 96.0µs ± 1% 77.1µs ± 1% -19.73% (p=0.000 n=10+10) Aggregator/MIN/ordered/decimal/groupSize=2/numInputRows=1048576-10 41.2ms ± 0% 33.1ms ± 0% -19.64% (p=0.000 n=8+10) Aggregator/MIN/hash/decimal/groupSize=32/numInputRows=32-10 17.5µs ± 1% 14.3µs ± 2% -18.59% (p=0.000 n=9+10) Aggregator/MIN/hash/decimal/groupSize=1/numInputRows=1-10 14.8µs ± 3% 12.1µs ± 3% -18.26% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=2/numInputRows=32-10 20.0µs ± 1% 16.4µs ± 1% -18.04% (p=0.000 n=9+9) Aggregator/MIN/hash/decimal/groupSize=1/numInputRows=32-10 20.9µs ± 1% 17.2µs ± 3% -17.80% (p=0.000 n=9+10) Aggregator/MIN/ordered/decimal/groupSize=1024/numInputRows=32768-10 884µs ± 0% 731µs ± 0% -17.30% (p=0.000 n=10+9) Aggregator/MIN/ordered/decimal/groupSize=1024/numInputRows=1048576-10 27.9ms ± 0% 23.1ms ± 0% -17.27% (p=0.000 n=9+9) Aggregator/MIN/hash/decimal/groupSize=1/numInputRows=1024-10 218µs ± 2% 181µs ± 2% -17.23% (p=0.000 n=10+10) Aggregator/MIN/ordered/decimal/groupSize=128/numInputRows=32768-10 911µs ± 1% 755µs ± 1% -17.10% (p=0.000 n=10+10) Aggregator/MIN/ordered/decimal/groupSize=32/numInputRows=32768-10 957µs ± 1% 798µs ± 0% -16.66% (p=0.000 n=9+9) Aggregator/MIN/hash/decimal/groupSize=1024/numInputRows=32768-10 1.54ms ± 1% 1.29ms ± 1% -16.56% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=2/numInputRows=1024-10 188µs ± 1% 157µs ± 2% -16.33% (p=0.000 n=10+10) Aggregator/MIN/ordered/decimal/groupSize=128/numInputRows=1048576-10 28.8ms ± 0% 24.1ms ± 0% -16.14% (p=0.000 n=9+9) Aggregator/MIN/ordered/decimal/groupSize=32/numInputRows=1048576-10 30.4ms ± 0% 25.7ms ± 1% -15.26% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=32/numInputRows=1048576-10 135ms ± 1% 114ms ± 1% -15.21% (p=0.000 n=10+9) Aggregator/MIN/hash/decimal/groupSize=128/numInputRows=32768-10 1.79ms ± 1% 1.52ms ± 1% -15.14% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=1/numInputRows=32768-10 6.29ms ± 1% 5.50ms ± 1% -12.62% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=1024/numInputRows=1048576-10 62.2ms ± 0% 54.7ms ± 0% -12.08% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=32/numInputRows=32768-10 2.46ms ± 1% 2.17ms ± 1% -11.88% (p=0.000 n=10+9) Aggregator/MIN/hash/decimal/groupSize=2/numInputRows=32768-10 5.64ms ± 0% 4.98ms ± 0% -11.76% (p=0.000 n=9+10) Aggregator/MIN/hash/decimal/groupSize=1/numInputRows=1048576-10 354ms ± 2% 318ms ± 1% -10.18% (p=0.000 n=10+8) Aggregator/MIN/hash/decimal/groupSize=128/numInputRows=1048576-10 91.8ms ± 1% 83.3ms ± 0% -9.25% (p=0.000 n=9+10) Aggregator/MIN/hash/decimal/groupSize=2/numInputRows=1048576-10 396ms ± 1% 369ms ± 1% -6.83% (p=0.000 n=8+8) name old speed new speed delta Aggregator/MIN/ordered/decimal/groupSize=1/numInputRows=1024-10 125MB/s ± 2% 193MB/s ± 0% +54.20% (p=0.000 n=9+8) Aggregator/MIN/ordered/decimal/groupSize=2/numInputRows=1024-10 120MB/s ± 1% 169MB/s ± 1% +41.24% (p=0.000 n=9+10) Aggregator/MIN/ordered/decimal/groupSize=1/numInputRows=32768-10 159MB/s ± 1% 219MB/s ± 1% +37.57% (p=0.000 n=9+10) Aggregator/MIN/ordered/decimal/groupSize=1/numInputRows=1048576-10 163MB/s ± 1% 219MB/s ± 1% +34.39% (p=0.000 n=10+10) Aggregator/MIN/ordered/decimal/groupSize=1/numInputRows=32-10 20.4MB/s ± 1% 27.2MB/s ± 2% +32.85% (p=0.000 n=9+10) Aggregator/MIN/ordered/decimal/groupSize=1/numInputRows=1-10 764kB/s ± 2% 997kB/s ± 1% +30.45% (p=0.000 n=10+9) Aggregator/MIN/ordered/decimal/groupSize=2/numInputRows=32-10 20.5MB/s ± 1% 26.8MB/s ± 2% +30.28% (p=0.000 n=8+10) Aggregator/MIN/ordered/decimal/groupSize=32/numInputRows=32-10 20.7MB/s ± 1% 26.8MB/s ± 1% +29.37% (p=0.000 n=8+10) Aggregator/MIN/ordered/decimal/groupSize=1024/numInputRows=1024-10 135MB/s ± 1% 174MB/s ± 2% +28.61% (p=0.000 n=10+10) Aggregator/MIN/ordered/decimal/groupSize=128/numInputRows=1024-10 134MB/s ± 1% 172MB/s ± 1% +28.35% (p=0.000 n=9+10) Aggregator/MIN/ordered/decimal/groupSize=32/numInputRows=1024-10 131MB/s ± 1% 168MB/s ± 2% +28.06% (p=0.000 n=9+10) Aggregator/MIN/ordered/decimal/groupSize=2/numInputRows=32768-10 200MB/s ± 0% 255MB/s ± 1% +27.45% (p=0.000 n=9+10) Aggregator/MIN/hash/decimal/groupSize=1024/numInputRows=1024-10 100MB/s ± 1% 126MB/s ± 1% +26.78% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=128/numInputRows=1024-10 94.6MB/s ± 1% 119.6MB/s ± 1% +26.47% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=32/numInputRows=1024-10 85.3MB/s ± 1% 106.3MB/s ± 1% +24.58% (p=0.000 n=10+10) Aggregator/MIN/ordered/decimal/groupSize=2/numInputRows=1048576-10 204MB/s ± 0% 254MB/s ± 0% +24.44% (p=0.000 n=8+10) Aggregator/MIN/hash/decimal/groupSize=32/numInputRows=32-10 14.6MB/s ± 1% 18.0MB/s ± 2% +22.83% (p=0.000 n=9+10) Aggregator/MIN/hash/decimal/groupSize=1/numInputRows=1-10 544kB/s ± 3% 664kB/s ± 2% +22.06% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=2/numInputRows=32-10 12.8MB/s ± 1% 15.6MB/s ± 1% +22.02% (p=0.000 n=9+9) Aggregator/MIN/hash/decimal/groupSize=1/numInputRows=32-10 12.3MB/s ± 1% 14.9MB/s ± 3% +21.67% (p=0.000 n=9+10) Aggregator/MIN/ordered/decimal/groupSize=1024/numInputRows=32768-10 296MB/s ± 0% 358MB/s ± 0% +20.92% (p=0.000 n=10+9) Aggregator/MIN/ordered/decimal/groupSize=1024/numInputRows=1048576-10 300MB/s ± 0% 363MB/s ± 0% +20.87% (p=0.000 n=9+9) Aggregator/MIN/hash/decimal/groupSize=1/numInputRows=1024-10 37.5MB/s ± 2% 45.4MB/s ± 2% +20.82% (p=0.000 n=10+10) Aggregator/MIN/ordered/decimal/groupSize=128/numInputRows=32768-10 288MB/s ± 1% 347MB/s ± 1% +20.62% (p=0.000 n=10+10) Aggregator/MIN/ordered/decimal/groupSize=32/numInputRows=32768-10 274MB/s ± 1% 329MB/s ± 0% +19.99% (p=0.000 n=9+9) Aggregator/MIN/hash/decimal/groupSize=1024/numInputRows=32768-10 170MB/s ± 1% 204MB/s ± 1% +19.85% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=2/numInputRows=1024-10 43.6MB/s ± 1% 52.1MB/s ± 2% +19.52% (p=0.000 n=10+10) Aggregator/MIN/ordered/decimal/groupSize=128/numInputRows=1048576-10 292MB/s ± 0% 348MB/s ± 0% +19.25% (p=0.000 n=9+9) Aggregator/MIN/ordered/decimal/groupSize=32/numInputRows=1048576-10 276MB/s ± 0% 326MB/s ± 1% +18.00% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=32/numInputRows=1048576-10 62.1MB/s ± 1% 73.3MB/s ± 1% +17.94% (p=0.000 n=10+9) Aggregator/MIN/hash/decimal/groupSize=128/numInputRows=32768-10 147MB/s ± 1% 173MB/s ± 1% +17.83% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=1/numInputRows=32768-10 41.7MB/s ± 1% 47.7MB/s ± 1% +14.44% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=1024/numInputRows=1048576-10 135MB/s ± 0% 153MB/s ± 0% +13.74% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=32/numInputRows=32768-10 106MB/s ± 1% 121MB/s ± 1% +13.48% (p=0.000 n=10+9) Aggregator/MIN/hash/decimal/groupSize=2/numInputRows=32768-10 46.5MB/s ± 0% 52.7MB/s ± 0% +13.34% (p=0.000 n=9+10) Aggregator/MIN/hash/decimal/groupSize=1/numInputRows=1048576-10 23.7MB/s ± 2% 26.3MB/s ± 2% +11.02% (p=0.000 n=10+9) Aggregator/MIN/hash/decimal/groupSize=128/numInputRows=1048576-10 91.3MB/s ± 0% 100.7MB/s ± 0% +10.27% (p=0.000 n=8+10) Aggregator/MIN/hash/decimal/groupSize=2/numInputRows=1048576-10 21.2MB/s ± 1% 22.7MB/s ± 1% +7.32% (p=0.000 n=8+8) name old alloc/op new alloc/op delta Aggregator/MIN/ordered/decimal/groupSize=1/numInputRows=32768-10 354kB ± 0% 239kB ± 0% -32.39% (p=0.000 n=9+9) Aggregator/MIN/ordered/decimal/groupSize=2/numInputRows=32768-10 348kB ± 0% 239kB ± 0% -31.23% (p=0.000 n=10+10) Aggregator/MIN/ordered/decimal/groupSize=1/numInputRows=1024-10 251kB ± 0% 177kB ± 0% -29.44% (p=0.000 n=10+10) Aggregator/MIN/ordered/decimal/groupSize=2/numInputRows=1024-10 246kB ± 0% 177kB ± 0% -28.28% (p=0.000 n=10+10) Aggregator/MIN/ordered/decimal/groupSize=32/numInputRows=32768-10 275kB ± 0% 198kB ± 0% -28.06% (p=0.000 n=10+10) Aggregator/MIN/ordered/decimal/groupSize=32/numInputRows=1024-10 243kB ± 0% 177kB ± 0% -27.15% (p=0.000 n=9+10) Aggregator/MIN/ordered/decimal/groupSize=128/numInputRows=1024-10 242kB ± 0% 177kB ± 0% -27.09% (p=0.000 n=10+10) Aggregator/MIN/ordered/decimal/groupSize=1024/numInputRows=1024-10 242kB ± 0% 177kB ± 0% -27.06% (p=0.000 n=10+10) Aggregator/MIN/ordered/decimal/groupSize=128/numInputRows=32768-10 268kB ± 0% 198kB ± 0% -26.05% (p=0.000 n=10+10) Aggregator/MIN/ordered/decimal/groupSize=1024/numInputRows=32768-10 264kB ± 0% 198kB ± 0% -25.04% (p=0.000 n=10+10) Aggregator/MIN/ordered/decimal/groupSize=1/numInputRows=32-10 75.1kB ± 0% 56.9kB ± 0% -24.25% (p=0.000 n=10+10) Aggregator/MIN/ordered/decimal/groupSize=2/numInputRows=32-10 74.9kB ± 0% 56.9kB ± 0% -24.12% (p=0.000 n=10+10) Aggregator/MIN/ordered/decimal/groupSize=32/numInputRows=32-10 74.8kB ± 0% 56.9kB ± 0% -23.99% (p=0.000 n=10+10) Aggregator/MIN/ordered/decimal/groupSize=1/numInputRows=1-10 69.6kB ± 0% 53.1kB ± 0% -23.66% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=1/numInputRows=1-10 95.2kB ± 0% 75.9kB ± 0% -20.23% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=2/numInputRows=32-10 102kB ± 0% 82kB ± 0% -20.04% (p=0.000 n=8+10) Aggregator/MIN/hash/decimal/groupSize=1/numInputRows=32-10 103kB ± 0% 83kB ± 0% -19.95% (p=0.000 n=7+10) Aggregator/MIN/hash/decimal/groupSize=32/numInputRows=32-10 100kB ± 0% 80kB ± 0% -19.90% (p=0.000 n=10+10) Aggregator/MIN/ordered/decimal/groupSize=32/numInputRows=1048576-10 1.14MB ± 0% 0.92MB ± 0% -18.80% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=1024/numInputRows=1024-10 271kB ± 0% 227kB ± 0% -16.16% (p=0.000 n=9+9) Aggregator/MIN/ordered/decimal/groupSize=2/numInputRows=1048576-10 1.10MB ± 0% 0.92MB ± 0% -15.92% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=128/numInputRows=1024-10 280kB ± 1% 235kB ± 1% -15.91% (p=0.000 n=10+10) Aggregator/MIN/ordered/decimal/groupSize=128/numInputRows=1048576-10 1.09MB ± 1% 0.92MB ± 0% -15.67% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=32/numInputRows=1024-10 291kB ± 0% 245kB ± 1% -15.53% (p=0.000 n=9+10) Aggregator/MIN/hash/decimal/groupSize=1024/numInputRows=32768-10 1.11MB ± 0% 0.95MB ± 0% -15.14% (p=0.000 n=8+10) Aggregator/MIN/hash/decimal/groupSize=128/numInputRows=32768-10 1.22MB ± 0% 1.04MB ± 0% -14.77% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=32/numInputRows=32768-10 1.65MB ± 0% 1.42MB ± 0% -13.56% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=1/numInputRows=1024-10 593kB ± 0% 513kB ± 0% -13.36% (p=0.000 n=9+8) Aggregator/MIN/hash/decimal/groupSize=2/numInputRows=1024-10 520kB ± 0% 454kB ± 0% -12.82% (p=0.000 n=9+8) Aggregator/MIN/ordered/decimal/groupSize=1/numInputRows=1048576-10 1.04MB ± 0% 0.92MB ± 0% -11.06% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=1024/numInputRows=1048576-10 2.48MB ± 0% 2.25MB ± 0% -9.32% (p=0.000 n=9+10) Aggregator/MIN/ordered/decimal/groupSize=1024/numInputRows=1048576-10 967kB ± 0% 881kB ± 0% -8.89% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=128/numInputRows=1048576-10 7.86MB ± 0% 7.36MB ± 0% -6.44% (p=0.000 n=9+10) Aggregator/MIN/hash/decimal/groupSize=1/numInputRows=32768-10 14.2MB ± 1% 13.4MB ± 1% -5.83% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=2/numInputRows=32768-10 12.3MB ± 0% 11.7MB ± 0% -5.03% (p=0.001 n=7+7) Aggregator/MIN/hash/decimal/groupSize=32/numInputRows=1048576-10 27.2MB ± 1% 25.9MB ± 1% -4.84% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=1/numInputRows=1048576-10 465MB ± 0% 445MB ± 0% -4.32% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=2/numInputRows=1048576-10 403MB ± 0% 390MB ± 0% -3.44% (p=0.000 n=10+10) name old allocs/op new allocs/op delta Aggregator/MIN/ordered/decimal/groupSize=1/numInputRows=1024-10 1.07k ± 0% 0.05k ± 0% -95.70% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=1/numInputRows=1048576-10 702k ± 0% 32k ± 0% -95.46% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=2/numInputRows=1048576-10 489k ± 0% 28k ± 0% -94.33% (p=0.000 n=10+10) Aggregator/MIN/ordered/decimal/groupSize=1/numInputRows=32768-10 4.40k ± 0% 0.30k ± 0% -93.15% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=1024/numInputRows=1024-10 1.11k ± 0% 0.09k ± 0% -92.02% (p=0.000 n=9+10) Aggregator/MIN/ordered/decimal/groupSize=2/numInputRows=1024-10 561 ± 0% 46 ± 0% -91.80% (p=0.000 n=10+10) Aggregator/MIN/ordered/decimal/groupSize=2/numInputRows=32768-10 3.45k ± 0% 0.30k ± 0% -91.28% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=128/numInputRows=1024-10 1.19k ± 0% 0.15k ± 1% -87.31% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=1024/numInputRows=32768-10 4.87k ± 0% 0.70k ± 0% -85.69% (p=0.000 n=9+10) Aggregator/MIN/hash/decimal/groupSize=1/numInputRows=32768-10 32.2k ± 0% 6.3k ± 0% -80.40% (p=0.000 n=10+10) Aggregator/MIN/ordered/decimal/groupSize=32/numInputRows=32768-10 1.45k ± 3% 0.29k ± 0% -79.66% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=32/numInputRows=1024-10 1.39k ± 0% 0.30k ± 1% -78.64% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=2/numInputRows=32768-10 26.2k ± 0% 6.8k ± 1% -73.95% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=128/numInputRows=32768-10 6.64k ± 0% 1.95k ± 0% -70.67% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=1/numInputRows=1024-10 3.44k ± 1% 1.12k ± 1% -67.48% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=32/numInputRows=1048576-10 62.4k ± 0% 20.4k ± 0% -67.32% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=2/numInputRows=1024-10 2.95k ± 1% 1.05k ± 1% -64.52% (p=0.000 n=9+10) Aggregator/MIN/hash/decimal/groupSize=32/numInputRows=32768-10 10.8k ± 0% 4.5k ± 0% -58.21% (p=0.000 n=10+10) Aggregator/MIN/ordered/decimal/groupSize=128/numInputRows=32768-10 628 ± 3% 294 ± 0% -53.21% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=128/numInputRows=1048576-10 36.1k ± 0% 20.2k ± 0% -44.06% (p=0.000 n=9+10) Aggregator/MIN/ordered/decimal/groupSize=32/numInputRows=1024-10 81.7 ± 3% 46.0 ± 0% -43.67% (p=0.000 n=9+10) Aggregator/MIN/ordered/decimal/groupSize=32/numInputRows=1048576-10 14.4k ± 1% 8.2k ± 0% -42.97% (p=0.000 n=10+10) Aggregator/MIN/ordered/decimal/groupSize=1/numInputRows=32-10 79.0 ± 0% 46.0 ± 0% -41.77% (p=0.000 n=10+10) Aggregator/MIN/ordered/decimal/groupSize=2/numInputRows=1048576-10 13.7k ± 1% 8.2k ± 0% -40.05% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=1/numInputRows=32-10 191 ± 1% 120 ± 1% -37.52% (p=0.000 n=7+10) Aggregator/MIN/ordered/decimal/groupSize=128/numInputRows=1048576-10 12.9k ± 2% 8.2k ± 0% -36.17% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=2/numInputRows=32-10 176 ± 2% 115 ± 1% -34.33% (p=0.000 n=10+9) Aggregator/MIN/ordered/decimal/groupSize=1/numInputRows=1048576-10 12.3k ± 0% 8.2k ± 0% -33.21% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=1024/numInputRows=1048576-10 21.8k ± 0% 15.2k ± 0% -30.13% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=32/numInputRows=32-10 118 ± 0% 84 ± 0% -28.81% (p=0.000 n=10+10) Aggregator/MIN/ordered/decimal/groupSize=2/numInputRows=32-10 63.0 ± 0% 46.0 ± 0% -26.98% (p=0.000 n=10+10) Aggregator/MIN/ordered/decimal/groupSize=128/numInputRows=1024-10 57.2 ±14% 46.0 ± 0% -19.58% (p=0.000 n=10+10) Aggregator/MIN/ordered/decimal/groupSize=1024/numInputRows=1048576-10 9.69k ± 1% 8.23k ± 0% -15.07% (p=0.000 n=10+10) Aggregator/MIN/ordered/decimal/groupSize=1024/numInputRows=32768-10 340 ± 2% 294 ± 0% -13.43% (p=0.000 n=10+10) Aggregator/MIN/ordered/decimal/groupSize=1/numInputRows=1-10 48.0 ± 0% 46.0 ± 0% -4.17% (p=0.000 n=10+10) Aggregator/MIN/ordered/decimal/groupSize=32/numInputRows=32-10 48.0 ± 0% 46.0 ± 0% -4.17% (p=0.000 n=10+10) Aggregator/MIN/ordered/decimal/groupSize=1024/numInputRows=1024-10 48.0 ± 0% 46.0 ± 0% -4.17% (p=0.000 n=10+10) Aggregator/MIN/hash/decimal/groupSize=1/numInputRows=1-10 82.0 ± 0% 79.0 ± 0% -3.66% (p=0.000 n=10+10) ``` Co-authored-by: Nathan VanBenschoten <[email protected]>
This commit changes
col.Vec.SetNulls
to accept aNulls
struct by value instead of by pointer. This lets us avoid a heap allocation on each call toNulls.Or
.We saw this in the "after" heap profiles in #74590, which looked like:
This PR eliminates one of these two heap allocations.