Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

sql: statement contention metric is calculating the txn contention instead of stmt #96429

Closed
j82w opened this issue Feb 2, 2023 · 0 comments · Fixed by #96458
Closed

sql: statement contention metric is calculating the txn contention instead of stmt #96429

j82w opened this issue Feb 2, 2023 · 0 comments · Fixed by #96458
Assignees
Labels
A-sql-observability Related to observability of the SQL layer C-bug Code not up to spec/doc, specs & docs deemed correct. Solution expected to change code/behavior.

Comments

@j82w
Copy link
Contributor

j82w commented Feb 2, 2023

There is a bug in this recent refactoring of the contention information which causes the statement increment to be done at the txn level instead. The following line needs to be moved to the statement finish so the metric is at the stmt level instead of the transaction level.

ex.planner.DistSQLPlanner().distSQLSrv.Metrics.ContendedQueriesCount.Inc(1)

https://cockroachlabs.slack.com/archives/C0159JK877C/p1675297127031379

Jira issue: CRDB-24120

@j82w j82w added C-bug Code not up to spec/doc, specs & docs deemed correct. Solution expected to change code/behavior. A-sql-observability Related to observability of the SQL layer T-sql-observability labels Feb 2, 2023
@j82w j82w changed the title sql: statement contention event is calculating txn instead of stmt sql: statement contention metric is calculating the txn contention instead of stmt Feb 2, 2023
@j82w j82w self-assigned this Feb 2, 2023
craig bot pushed a commit that referenced this issue Feb 3, 2023
94165: kv: integrate raft async storage writes r=nvanbenschoten a=nvanbenschoten

Fixes #17500.
Epic: CRDB-22644

This commit integrates with the `AsyncStorageWrites` functionality that we added to Raft in etcd-io/raft/pull/8. 

## Approach

The commit makes the minimal changes needed to integrate with async storage writes and pull fsyncs out of the raft state machine loop. It does not make an effort to extract the non-durable portion of raft log writes or raft log application onto separate goroutine pools, as was described in #17500. Those changes will also be impactful, but they're non trivial and bump into a pipelining vs. batching trade-off, so they are left as future work items. See #94853 and #94854.

With this change, asynchronous Raft log syncs are enabled by the new `DB.ApplyNoSyncWait` Pebble API introduced in cockroachdb/pebble/pull/2117.  The `handleRaftReady` state machine loop continues to initiate Raft log writes, but it uses the Pebble API to offload waiting on durability to a separate goroutine. This separate goroutine then sends the corresponding `MsgStorageAppend`'s response messages where they need to go (locally and/or to the Raft leader) when the fsync completes. The async storage writes functionality in Raft makes this all safe.

## Benchmark Results

The result of this change is reduced interference between Raft proposals. As a result, it reduces end-to-end commit latency.

etcd-io/raft/pull/8 presented a collection of benchmark results captured from integrating async storage writes with rafttoy.

When integrated into CockroachDB, we see similar improvements to average and tail latency. However, it doesn't provide the throughput improvements at the top end because log appends and state machine application have not yet been extracted into separate goroutine pools, which would facilitate an increased opportunity for batching.

To visualize the impact on latency, consider the following test. The experiment uses a 3-node GCP cluster with n2-standard-32 instances spread across three availability zones. It runs kv0 (write-only) against the cluster with 64-byte values. It then ramps up concurrency to compare throughput vs. average and tail latency.

_NOTE: log scales on x and y axes_

![Throughput vs  average latency of write-only workload](https://user-images.githubusercontent.com/5438456/209210719-bec842f6-1093-48cd-8be7-05a3d79c2a71.svg)

![Throughput vs  tail latency of write-only workload](https://user-images.githubusercontent.com/5438456/209210777-670a4d25-9516-41a2-b7e7-86b402004536.svg)

Async storage writes impacts latency by different amounts at different throughputs, ranging from an improvement of 20% to 40% when the system is "well utilized". However, it increases latency by 5% to 10% when the system is over-saturated and CPU bound, presumably because of the extra goroutine handoff to the log append fsync callback, which will be impacted by elevated goroutine scheduling latency.

| Throughput (B/s) | Throughput (qps) | Avg. Latency Δ | p99 Latency Δ |
| ---------------- | ---------------- | -------------- | ------------- |
| 63  KB/s         | 1,000            | -10.5%         | -8.8%         |
| 125 KB/s         | 2,000            | -7.1%          | -10.4%        |
| 250 KB/s         | 4,000            | -20%           | -11.2%        |
| 500 KB/s         | 8,000            | -16.6%         | -25.3%        |
| 1 MB/s           | 16,000           | -30.8%         | -44.0%        |
| 2 MB/s           | 32,000           | -38.2%         | -30.9%        |
| 4 MB/s           | 64,000           | 5.9%           | 9.4%          |

### Other benchmark results
```bash
name                   old ops/s    new ops/s    delta
# 50% read, 50% update
ycsb/A/nodes=3          16.0k ± 5%   16.2k ± 4%     ~     (p=0.353 n=10+10)
ycsb/A/nodes=3/cpu=32   28.7k ± 5%   33.8k ± 2%  +17.57%  (p=0.000 n=9+9)
# 95% read, 5% update
ycsb/B/nodes=3          29.9k ± 3%   30.2k ± 3%     ~     (p=0.278 n=9+10)
ycsb/B/nodes=3/cpu=32    101k ± 1%    100k ± 3%     ~     (p=0.274 n=8+10)
# 100% read
ycsb/C/nodes=3          40.4k ± 3%   40.0k ± 3%     ~     (p=0.190 n=10+10)
ycsb/C/nodes=3/cpu=32    135k ± 1%    137k ± 1%   +0.87%  (p=0.011 n=9+9)
# 95% read, 5% insert
ycsb/D/nodes=3          33.6k ± 3%   33.8k ± 3%     ~     (p=0.315 n=10+10)
ycsb/D/nodes=3/cpu=32    108k ± 1%    106k ± 6%     ~     (p=0.739 n=10+10)
# 95% scan, 5% insert
ycsb/E/nodes=3          3.79k ± 1%   3.73k ± 1%   -1.42%  (p=0.000 n=9+9)
ycsb/E/nodes=3/cpu=32   6.31k ± 5%   6.48k ± 6%     ~     (p=0.123 n=10+10)
# 50% read, 50% read-modify-write
ycsb/F/nodes=3          7.68k ± 2%   7.99k ± 2%   +4.11%  (p=0.000 n=10+10)
ycsb/F/nodes=3/cpu=32   15.6k ± 4%   18.1k ± 3%  +16.14%  (p=0.000 n=8+10)

name                   old avg(ms)  new avg(ms)  delta
ycsb/A/nodes=3           6.01 ± 5%    5.95 ± 4%     ~     (p=0.460 n=10+10)
ycsb/A/nodes=3/cpu=32    5.01 ± 4%    4.25 ± 4%  -15.19%  (p=0.000 n=9+10)
ycsb/B/nodes=3           4.80 ± 0%    4.77 ± 4%     ~     (p=0.586 n=7+10)
ycsb/B/nodes=3/cpu=32    1.90 ± 0%    1.90 ± 0%     ~     (all equal)
ycsb/C/nodes=3           3.56 ± 2%    3.61 ± 3%     ~     (p=0.180 n=10+10)
ycsb/C/nodes=3/cpu=32    1.40 ± 0%    1.40 ± 0%     ~     (all equal)
ycsb/D/nodes=3           2.87 ± 2%    2.85 ± 2%     ~     (p=0.650 n=10+10)
ycsb/D/nodes=3/cpu=32    1.30 ± 0%    1.34 ± 4%     ~     (p=0.087 n=10+10)
ycsb/E/nodes=3           25.3 ± 0%    25.7 ± 1%   +1.38%  (p=0.000 n=8+8)
ycsb/E/nodes=3/cpu=32    22.9 ± 5%    22.2 ± 6%     ~     (p=0.109 n=10+10)
ycsb/F/nodes=3           12.5 ± 2%    12.0 ± 1%   -3.72%  (p=0.000 n=10+9)
ycsb/F/nodes=3/cpu=32    9.27 ± 4%    7.98 ± 3%  -13.96%  (p=0.000 n=8+10)

name                   old p99(ms)  new p99(ms)  delta
ycsb/A/nodes=3           45.7 ±15%    35.7 ± 6%  -21.90%  (p=0.000 n=10+8)
ycsb/A/nodes=3/cpu=32    67.6 ±13%    55.3 ± 5%  -18.10%  (p=0.000 n=9+10)
ycsb/B/nodes=3           30.5 ±24%    29.4 ± 7%     ~     (p=0.589 n=10+10)
ycsb/B/nodes=3/cpu=32    12.8 ± 2%    13.3 ± 7%     ~     (p=0.052 n=10+8)
ycsb/C/nodes=3           14.0 ± 3%    14.2 ± 0%     ~     (p=0.294 n=10+8)
ycsb/C/nodes=3/cpu=32    5.80 ± 0%    5.70 ± 5%     ~     (p=0.233 n=7+10)
ycsb/D/nodes=3           12.4 ± 2%    11.7 ± 3%   -5.32%  (p=0.001 n=10+10)
ycsb/D/nodes=3/cpu=32    6.30 ± 0%    5.96 ± 6%   -5.40%  (p=0.001 n=10+10)
ycsb/E/nodes=3           81.0 ± 4%    83.9 ± 0%   +3.63%  (p=0.012 n=10+7)
ycsb/E/nodes=3/cpu=32     139 ±19%     119 ±12%  -14.46%  (p=0.021 n=10+10)
ycsb/F/nodes=3            122 ±17%     103 ±10%  -15.48%  (p=0.002 n=10+8)
ycsb/F/nodes=3/cpu=32     146 ±20%     133 ± 7%   -8.89%  (p=0.025 n=10+10)
```

The way to interpret these results is that async raft storage writes reduce latency and, as a result of the closed loop natured workload, also increase throughput for the YCSB variants that perform writes and aren't already CPU saturated. Variants that are read-only are unaffected. Variants that are CPU-saturated do not benefit from the change because they are already bottlenecked on CPU resources and cannot push any more load (see above).

----

Release note (performance improvement): The Raft proposal pipeline has been optimized to reduce interference between Raft proposals. This improves average and tail write latency at high concurrency.

96458: sql: fixes statement contention count metric r=j82w a=j82w

Fixes a bug introduced in #94750 where the metric
count was counting transaction that hit contention events instead of the statement count.

closes: #96429

Release note: none

Co-authored-by: Nathan VanBenschoten <[email protected]>
Co-authored-by: j82w <[email protected]>
@craig craig bot closed this as completed in 7fb9f49 Feb 3, 2023
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
A-sql-observability Related to observability of the SQL layer C-bug Code not up to spec/doc, specs & docs deemed correct. Solution expected to change code/behavior.
Projects
None yet
Development

Successfully merging a pull request may close this issue.

1 participant