-
Notifications
You must be signed in to change notification settings - Fork 3.8k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
storage: GC range keys by unsetting identical suffixes
In CockroachDB's key encoding some keys have multiple logically equivalent but physically distinct encodings. Most notably, in CockroachDB versions 23.2 and earlier keys written to global tables encoded MVCC timestamps with a 'synthetic bit.' In #101938 CockroachDB stopped encoding and decoding this synthetic bit, transparently ignoring it. In #129592 we observed the existence of a bug in the CockroachDB comparator when comparing two MVCC timestamp suffixes, specifically outside the context of a full MVCC key. The comparator failed to consider a timestamp with the synthetic bit and a timestamp without the synthetic bit as logically equivalent. There are limited instances where Pebble uses the comparator to compare "bare suffixes," and all instances are constrained to the implementation of range keys. In #129592 it was observed that the comparator bug could prevent the garbage collection of MVCC delete range tombstones (the single use of range keys within CockroachDB). A cluster running 23.2 or earlier may write a MVCC delete range tombstone with a timestamp encoding the synthetic bit. If the cluster subsequently upgraded to 24.1 or later, the code path to clear range keys stopped understanding synthetic bits and wrote range key unset tombstones without the synthetic bit set. Due to the comparator bug, Pebble did not consider these timestamp suffixes equal and the unset was ineffective. We initially attempted to fix this issue by fixing the comparator, but inadvertently introduced the possibility of replica divergence #130533 by changing the semantics of LSM state below raft. This commit works around this comparator bug by adapting ClearMVCCRangeKey to write range key unsets using the verbatim suffix that was read from the storage engine. To avoid reverting #101938 and re-introducing knowledge of the synthetic bit, the MVCCRangeKey data structures are adapted to retain a copy of the encoded timestamp suffix when reading range keys from storage engine iterators. If later an attempt is made to clear the range key through ClearMVCCRangeKey, this encoded timestamp suffix is used instead of re-encoding the timestamp. Through avoiding the decoding/encoding roundtrip, ClearMVCCRangeKey ensures that the suffixes it writes are identical to the range keys that exist on disk, even if they encode a synthetic bit. Release note (bug fix): Fixes a bug that could result in the inability to garbage collect a MVCC range tombstone within a global table. Epic: none Informs #129592.
- Loading branch information
Showing
16 changed files
with
280 additions
and
63 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.