-
Notifications
You must be signed in to change notification settings - Fork 3.9k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
storage: add constraint rule solver for allocation
Rules are represented as a single function that returns the candidacy of the store as well as a float value representing the score. These scores are then aggregated from all rules and returns the stores sorted by them. Current rules: - ruleReplicasUniqueNodes ensures that no two replicas are put on the same node. - ruleConstraints enforces that required and prohibited constraints are followed, and that stores with more positive constraints are ranked higher. - ruleDiversity ensures that nodes that have the fewest locality tiers in common are given higher priority. - ruleCapacity prioritizes placing data on empty nodes when the choice is available and prevents data from going onto mostly full nodes.
- Loading branch information
Showing
3 changed files
with
620 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,282 @@ | ||
// Copyright 2016 The Cockroach Authors. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or | ||
// implied. See the License for the specific language governing | ||
// permissions and limitations under the License. | ||
// | ||
// Author: Tristan Rice ([email protected]) | ||
|
||
package storage | ||
|
||
import ( | ||
"math" | ||
"sort" | ||
|
||
"github.com/cockroachdb/cockroach/config" | ||
"github.com/cockroachdb/cockroach/roachpb" | ||
"github.com/pkg/errors" | ||
) | ||
|
||
// candidate represents a candidate for allocation. | ||
type candidate struct { | ||
store roachpb.StoreDescriptor | ||
score float64 | ||
} | ||
|
||
// solveState is used to pass solution state information into a rule. | ||
type solveState struct { | ||
constraints config.Constraints | ||
store roachpb.StoreDescriptor | ||
existing []roachpb.ReplicaDescriptor | ||
sl StoreList | ||
tiers map[roachpb.StoreID]map[string]roachpb.Tier | ||
tierOrder []roachpb.Tier | ||
} | ||
|
||
// rule is a generic rule that can be used to solve a constraint problem. | ||
// Returning false will remove the store from the list of candidate stores. The | ||
// score will be weighted and then summed together with the other rule scores to | ||
// create a store ranking (higher is better). | ||
type rule struct { | ||
weight float64 | ||
run func(state solveState) (candidate bool, score float64) | ||
} | ||
|
||
// defaultRules is the default rule set to use. | ||
var defaultRules = []rule{ | ||
{ | ||
weight: 1.0, | ||
run: ruleReplicasUniqueNodes, | ||
}, | ||
{ | ||
weight: 1.0, | ||
run: ruleConstraints, | ||
}, | ||
{ | ||
weight: 0.01, | ||
run: ruleCapacity, | ||
}, | ||
{ | ||
weight: 0.1, | ||
run: ruleDiversity, | ||
}, | ||
} | ||
|
||
// makeDefaultRuleSolver returns a ruleSolver with defaultRules. | ||
func makeDefaultRuleSolver(storePool *StorePool) *ruleSolver { | ||
return makeRuleSolver(storePool, defaultRules) | ||
} | ||
|
||
// makeRuleSolver makes a new ruleSolver. The order of the rules is the order in | ||
// which they are run. For optimization purposes, less computationally intense | ||
// rules should run first to eliminate candidates. | ||
func makeRuleSolver(storePool *StorePool, rules []rule) *ruleSolver { | ||
return &ruleSolver{ | ||
storePool: storePool, | ||
rules: rules, | ||
} | ||
} | ||
|
||
// ruleSolver solves a set of rules for a store. | ||
type ruleSolver struct { | ||
storePool *StorePool | ||
rules []rule | ||
} | ||
|
||
// solve given constraints and return the score. | ||
func (rs *ruleSolver) Solve( | ||
c config.Constraints, existing []roachpb.ReplicaDescriptor, | ||
) ([]candidate, error) { | ||
sl, _, throttledStoreCount := rs.storePool.getStoreList(config.Constraints{}, false) | ||
|
||
// When there are throttled stores that do match, we shouldn't send | ||
// the replica to purgatory or even consider relaxing the constraints. | ||
if throttledStoreCount > 0 { | ||
return nil, errors.Errorf("%d matching stores are currently throttled", throttledStoreCount) | ||
} | ||
|
||
candidates := make([]candidate, 0, len(sl.stores)) | ||
state := solveState{ | ||
constraints: c, | ||
existing: existing, | ||
sl: sl, | ||
tierOrder: canonicalTierOrder(sl), | ||
tiers: storeTierMap(sl), | ||
} | ||
|
||
for _, store := range sl.stores { | ||
state.store = store | ||
if cand, ok := rs.computeCandidate(state); ok { | ||
candidates = append(candidates, cand) | ||
} | ||
} | ||
sort.Sort(byScore(candidates)) | ||
return candidates, nil | ||
} | ||
|
||
// computeCandidate runs all the rules for the store and returns the candidacy | ||
// information. Returns false if not a candidate. | ||
func (rs *ruleSolver) computeCandidate( | ||
state solveState, | ||
) (candidate, bool) { | ||
var totalScore float64 | ||
for _, rule := range rs.rules { | ||
isCandidate, score := rule.run(state) | ||
if !isCandidate { | ||
return candidate{}, false | ||
} | ||
if !math.IsNaN(score) { | ||
totalScore += score * rule.weight | ||
} | ||
} | ||
return candidate{store: state.store, score: totalScore}, true | ||
} | ||
|
||
// ruleReplicasUniqueNodes ensures that no two replicas are put on the same | ||
// node. | ||
func ruleReplicasUniqueNodes(state solveState) (candidate bool, score float64) { | ||
for _, r := range state.existing { | ||
if r.NodeID == state.store.Node.NodeID { | ||
return false, 0 | ||
} | ||
} | ||
return true, 0 | ||
} | ||
|
||
// storeHasConstraint returns whether a store descriptor attributes or locality | ||
// matches the key value pair in the constraint. | ||
func storeHasConstraint(store roachpb.StoreDescriptor, c config.Constraint) bool { | ||
var found bool | ||
if c.Key == "" { | ||
for _, attrs := range []roachpb.Attributes{store.Attrs, store.Node.Attrs} { | ||
for _, attr := range attrs.Attrs { | ||
if attr == c.Value { | ||
return true | ||
} | ||
} | ||
} | ||
} else { | ||
for _, tier := range store.Locality.Tiers { | ||
if c.Key == tier.Key && c.Value == tier.Value { | ||
return true | ||
} | ||
} | ||
} | ||
return found | ||
} | ||
|
||
// ruleConstraints enforces that required and prohibited constraints are | ||
// followed, and that stores with more positive constraints are ranked higher. | ||
func ruleConstraints(state solveState) (candidate bool, score float64) { | ||
matched := 0 | ||
for _, c := range state.constraints.Constraints { | ||
hasConstraint := storeHasConstraint(state.store, c) | ||
switch { | ||
case c.Type == config.Constraint_POSITIVE && hasConstraint: | ||
matched++ | ||
case c.Type == config.Constraint_REQUIRED && !hasConstraint: | ||
return false, 0 | ||
case c.Type == config.Constraint_PROHIBITED && hasConstraint: | ||
return false, 0 | ||
} | ||
} | ||
|
||
return true, float64(matched) / float64(len(state.constraints.Constraints)) | ||
} | ||
|
||
// ruleDiversity ensures that nodes that have the fewest locality tiers in | ||
// common are given higher priority. | ||
func ruleDiversity(state solveState) (candidate bool, score float64) { | ||
storeTiers := state.tiers[state.store.StoreID] | ||
var maxScore float64 | ||
for i, tier := range state.tierOrder { | ||
storeTier, ok := storeTiers[tier.Key] | ||
if !ok { | ||
continue | ||
} | ||
tierScore := 1 / (float64(i) + 1) | ||
for _, existing := range state.existing { | ||
existingTier, ok := state.tiers[existing.StoreID][tier.Key] | ||
if ok && existingTier.Value != storeTier.Value { | ||
score += tierScore | ||
} | ||
maxScore += tierScore | ||
} | ||
} | ||
return true, score / maxScore | ||
} | ||
|
||
// ruleCapacity prioritizes placing data on empty nodes when the choice is | ||
// available and prevents data from going onto mostly full nodes. | ||
func ruleCapacity(state solveState) (candidate bool, score float64) { | ||
// Don't overfill stores. | ||
if state.store.Capacity.FractionUsed() > maxFractionUsedThreshold { | ||
return false, 0 | ||
} | ||
|
||
return true, 1 / float64(state.store.Capacity.RangeCount+1) | ||
} | ||
|
||
// canonicalTierOrder returns the most common key at each tier level. | ||
func canonicalTierOrder(sl StoreList) []roachpb.Tier { | ||
maxTierCount := 0 | ||
for _, store := range sl.stores { | ||
if count := len(store.Locality.Tiers); maxTierCount < count { | ||
maxTierCount = count | ||
} | ||
} | ||
|
||
// Might have up to maxTierCount of tiers. | ||
tiers := make([]roachpb.Tier, 0, maxTierCount) | ||
for i := 0; i < maxTierCount; i++ { | ||
// At each tier, count the number of occurrences of each key. | ||
counts := map[string]int{} | ||
maxKey := "" | ||
for _, store := range sl.stores { | ||
key := "" | ||
if i < len(store.Locality.Tiers) { | ||
key = store.Locality.Tiers[i].Key | ||
} | ||
counts[key]++ | ||
if counts[key] > counts[maxKey] { | ||
maxKey = key | ||
} | ||
} | ||
// Don't add the tier if most nodes don't have that many tiers. | ||
if maxKey != "" { | ||
tiers = append(tiers, roachpb.Tier{Key: maxKey}) | ||
} | ||
} | ||
return tiers | ||
} | ||
|
||
// storeTierMap indexes a store list so you can look up the locality tier | ||
// value from store ID and tier key. | ||
func storeTierMap(sl StoreList) map[roachpb.StoreID]map[string]roachpb.Tier { | ||
m := map[roachpb.StoreID]map[string]roachpb.Tier{} | ||
for _, store := range sl.stores { | ||
sm := map[string]roachpb.Tier{} | ||
m[store.StoreID] = sm | ||
for _, tier := range store.Locality.Tiers { | ||
sm[tier.Key] = tier | ||
} | ||
} | ||
return m | ||
} | ||
|
||
// byScore implements sort.Interface for candidate slices. | ||
type byScore []candidate | ||
|
||
var _ sort.Interface = byScore(nil) | ||
|
||
func (c byScore) Len() int { return len(c) } | ||
func (c byScore) Less(i, j int) bool { return c[i].score > c[j].score } | ||
func (c byScore) Swap(i, j int) { c[i], c[j] = c[j], c[i] } |
Oops, something went wrong.