-
Notifications
You must be signed in to change notification settings - Fork 3.8k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Creates a new "testmodel" package under "ts" which contains an in-memory test model designed to be much more conceptually simple than the optimized query engine actually used by time series. The new test model stores time series in sorted arrays as full-fidelity nanosecond data points. It then uses a highly decomposed set of functions to process that data; these functions have been designed to be individually tested. The "Query" method shows an example of how simple this system is when compared to the actual time series system, which uses iterators and breaks up queries into multiple chunks. This model has not yet been hooked up to time series tests; it will soon be used to replace the existing test model, which is *not* easier to understand than the actual time series database.
- Loading branch information
Matt Tracy
committed
Apr 9, 2018
1 parent
11def1a
commit 0d3d76a
Showing
5 changed files
with
1,075 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,199 @@ | ||
// Copyright 2018 The Cockroach Authors. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or | ||
// implied. See the License for the specific language governing | ||
// permissions and limitations under the License. | ||
|
||
package testmodel | ||
|
||
import ( | ||
"math" | ||
"sort" | ||
) | ||
|
||
// DataPoint represents a single point in a time series. It is a timestamp/value | ||
// pair. | ||
type DataPoint struct { | ||
timestamp int64 | ||
value float64 | ||
} | ||
|
||
// dp is a shorthand function for constructing a DataPoint, used for convenience | ||
// in tests. | ||
func dp(timestamp int64, value float64) DataPoint { | ||
return DataPoint{ | ||
timestamp: timestamp, | ||
value: value, | ||
} | ||
} | ||
|
||
// DataSeries represents a series of data points ordered by timestamp. | ||
type DataSeries []DataPoint | ||
|
||
func (data DataSeries) Len() int { return len(data) } | ||
func (data DataSeries) Swap(i, j int) { data[i], data[j] = data[j], data[i] } | ||
func (data DataSeries) Less(i, j int) bool { return data[i].timestamp < data[j].timestamp } | ||
|
||
func normalizeTime(time, resolution int64) int64 { | ||
return time - time%resolution | ||
} | ||
|
||
// timeSlice returns the set of the dataPoints from the supplied series with | ||
// timestamps that fall in the interval [start, end) (not inclusive of end | ||
// timestamp). | ||
func (data DataSeries) timeSlice(start, end int64) DataSeries { | ||
startIdx := sort.Search(len(data), func(i int) bool { | ||
return data[i].timestamp >= start | ||
}) | ||
endIdx := sort.Search(len(data), func(i int) bool { | ||
return end <= data[i].timestamp | ||
}) | ||
|
||
result := data[startIdx:endIdx] | ||
if len(result) == 0 { | ||
return nil | ||
} | ||
return result | ||
} | ||
|
||
// groupByResolution aggregates data points in the given series into time | ||
// buckets based on the provided resolution. | ||
func (data DataSeries) groupByResolution(resolution int64, aggFunc aggFunc) DataSeries { | ||
if len(data) == 0 { | ||
return nil | ||
} | ||
|
||
start := normalizeTime(data[0].timestamp, resolution) | ||
end := normalizeTime(data[len(data)-1].timestamp, resolution) | ||
result := make(DataSeries, 0, (end-start)/resolution+1) | ||
|
||
for len(data) > 0 { | ||
bucketTime := normalizeTime(data[0].timestamp, resolution) | ||
// Grab the index of the first data point which does not belong to the same | ||
// bucket as the start data point. | ||
bucketEndIdx := sort.Search(len(data), func(idx int) bool { | ||
return normalizeTime(data[idx].timestamp, resolution) > bucketTime | ||
}) | ||
// Compute the next point as an aggregate of all underlying points which | ||
// go in the same bucket. | ||
result = append(result, dp(bucketTime, aggFunc(data[:bucketEndIdx]))) | ||
data = data[bucketEndIdx:] | ||
} | ||
|
||
return result | ||
} | ||
|
||
// fillForResolution is used to fill in gaps in the provided data based on the | ||
// provided resolution and fill function; any gaps longer than the resolution | ||
// size will be eligible for fill. This is intended to be called on data sets | ||
// that have been generated using groupByResolution, and may have unexpected | ||
// results otherwise. | ||
func (data DataSeries) fillForResolution(resolution int64, fillFunc fillFunc) DataSeries { | ||
if len(data) < 2 { | ||
return data | ||
} | ||
|
||
result := make(DataSeries, 0, len(data)) | ||
result = append(result, data[0]) | ||
for i := 1; i < len(data); i++ { | ||
if data[i].timestamp-data[i-1].timestamp > resolution { | ||
result = append(result, fillFunc(data[:i], data[i:], resolution)...) | ||
} | ||
result = append(result, data[i]) | ||
} | ||
|
||
return result | ||
} | ||
|
||
// rateOfChange returns the rate of change (over the supplied period) for each | ||
// point in the supplied series, which is defined as: | ||
// (value - valuePrev) / ((time - timePrev) / period) | ||
// The returned series will be shorter than the original series by one, since | ||
// the rate of change for the first datapoint cannot be computed in this | ||
// fashion. | ||
func (data DataSeries) rateOfChange(period int64) DataSeries { | ||
if len(data) < 2 { | ||
return nil | ||
} | ||
|
||
result := make(DataSeries, len(data)-1) | ||
for i := 1; i < len(data); i++ { | ||
result[i-1] = dp( | ||
data[i].timestamp, | ||
(data[i].value-data[i-1].value)/float64((data[i].timestamp-data[i-1].timestamp)/period), | ||
) | ||
} | ||
return result | ||
} | ||
|
||
// nonNegative replaces any values less than zero with a zero. | ||
func (data DataSeries) nonNegative() DataSeries { | ||
result := make(DataSeries, len(data)) | ||
for i := 0; i < len(data); i++ { | ||
if data[i].value >= 0 { | ||
result[i] = data[i] | ||
} else { | ||
result[i] = dp(data[i].timestamp, 0) | ||
} | ||
} | ||
return result | ||
} | ||
|
||
// groupSeriesByTimestamp returns a single DataSeries by aggregating DataPoints | ||
// with matching timestamps from the supplied set of series. | ||
func groupSeriesByTimestamp(datas []DataSeries, aggFunc aggFunc) DataSeries { | ||
if len(datas) == 0 { | ||
return nil | ||
} | ||
|
||
results := make(DataSeries, 0) | ||
dataPointsToAggregate := make(DataSeries, 0, len(datas)) | ||
for { | ||
// Filter empty data series. | ||
origDatas := datas | ||
datas = datas[:0] | ||
for _, data := range origDatas { | ||
if len(data) > 0 { | ||
datas = append(datas, data) | ||
} | ||
} | ||
if len(datas) == 0 { | ||
break | ||
} | ||
|
||
// Create a slice of datapoints which share the earliest timestamp of any | ||
// datapoint across all collections. If the data series are all perfectly | ||
// aligned (same length and timestamps), then this will just be he first | ||
// data point in each series. | ||
earliestTime := int64(math.MaxInt64) | ||
for _, data := range datas { | ||
if data[0].timestamp < earliestTime { | ||
// New earliest timestamp found, discard any points which were | ||
// previously in the collection. | ||
dataPointsToAggregate = dataPointsToAggregate[:0] | ||
earliestTime = data[0].timestamp | ||
} | ||
if data[0].timestamp == earliestTime { | ||
// Data point matches earliest timestamp, add it to current datapoint | ||
// collection. | ||
dataPointsToAggregate = append(dataPointsToAggregate, data[0]) | ||
} | ||
} | ||
results = append(results, dp(earliestTime, aggFunc(dataPointsToAggregate))) | ||
for i := range datas { | ||
if datas[i][0].timestamp == earliestTime { | ||
datas[i] = datas[i][1:] | ||
} | ||
} | ||
} | ||
|
||
return results | ||
} |
Oops, something went wrong.