Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Multi-device DAGMA Training and No-val-set Easy training #256

Merged
merged 2 commits into from
Nov 4, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions contextualized/dags/losses.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@


def dag_loss_dagma_indiv(w, s=1):
M = s * torch.eye(w.shape[-1]) - w * w
M = s * torch.eye(w.shape[-1]).to(w.device) - w * w
return w.shape[-1] * np.log(s) - torch.slogdet(M)[1]


Expand All @@ -18,7 +18,7 @@ def dag_loss_dagma(W, s=1, alpha=0.0, **kwargs):

def dag_loss_poly_indiv(w):
d = w.shape[-1]
return torch.trace((torch.eye(d) + (1 / d) * torch.matmul(w, w))^d) - d
return torch.trace((torch.eye(d).to(w.device) + (1 / d) * torch.matmul(w, w)) ** d) - d


def dag_loss_poly(W, **kwargs):
Expand Down
36 changes: 13 additions & 23 deletions contextualized/dags/tests.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
from pytorch_lightning.callbacks import LearningRateFinder


from contextualized.dags.lightning_modules import NOTMAD
from contextualized.dags.lightning_modules import NOTMAD, DEFAULT_SS_PARAMS, DEFAULT_ARCH_PARAMS
from contextualized.dags import graph_utils
from contextualized.dags.trainers import GraphTrainer
from contextualized.dags.losses import mse_loss as mse
Expand Down Expand Up @@ -37,26 +37,21 @@ def _train(self, model_args, n_epochs):
model = NOTMAD(
self.C.shape[-1],
self.X.shape[-1],
archetype_params={
archetype_loss_params={
"l1": 0.0,
"dag": model_args.get(
"dag",
{
"loss_type": "NOTEARS",
"params": {
"alpha": 1e-1,
"rho": 1e-2,
"h_old": 0.0,
"tol": 0.25,
"use_dynamic_alpha_rho": True,
},
},
DEFAULT_ARCH_PARAMS["dag"],
),
"init_mat": INIT_MAT,
"num_factors": model_args.get("num_factors", 0),
"factor_mat_l1": 0.0,
"num_archetypes": model_args.get("num_archetypes", k),
},
sample_specific_loss_params= {
"l1": 0.0,
"dag": DEFAULT_SS_PARAMS["dag"],
}
)
dataloader = model.dataloader(self.C, self.X, batch_size=1, num_workers=0)
trainer = GraphTrainer(
Expand Down Expand Up @@ -181,26 +176,21 @@ def _train(self, model_args, n_epochs):
model = NOTMAD(
self.C.shape[-1],
self.X.shape[-1],
archetype_params={
archetype_loss_params={
"l1": 0.0,
"dag": model_args.get(
"dag",
{
"loss_type": "NOTEARS",
"params": {
"alpha": 1e-1,
"rho": 1e-2,
"h_old": 0.0,
"tol": 0.25,
"use_dynamic_alpha_rho": True,
},
},
DEFAULT_ARCH_PARAMS["dag"],
),
"init_mat": INIT_MAT,
"num_factors": model_args.get("num_factors", 0),
"factor_mat_l1": 0.0,
"num_archetypes": model_args.get("num_archetypes", k),
},
sample_specific_loss_params= {
"l1": 0.0,
"dag": DEFAULT_SS_PARAMS["dag"],
}
)
train_dataloader = model.dataloader(
self.C_train, self.X_train, batch_size=1, num_workers=0
Expand Down
22 changes: 15 additions & 7 deletions contextualized/easy/wrappers/SKLearnWrapper.py
Original file line number Diff line number Diff line change
Expand Up @@ -335,7 +335,7 @@ def _split_train_data(self, C, X, Y=None, Y_required=False, **kwargs):
else:
print("X_val not provided, not using the provided C_val.")
if "val_split" in kwargs:
if 0 < kwargs["val_split"] < 1:
if 0 <= kwargs["val_split"] < 1:
val_split = kwargs["val_split"]
else:
print(
Expand All @@ -346,15 +346,23 @@ def _split_train_data(self, C, X, Y=None, Y_required=False, **kwargs):
else:
val_split = self.default_val_split
if Y is None:
C_train, C_val, X_train, X_val = train_test_split(
C, X, test_size=val_split, shuffle=True
)
if val_split > 0:
C_train, C_val, X_train, X_val = train_test_split(
C, X, test_size=val_split, shuffle=True
)
else:
C_train, X_train = C, X
C_val, X_val = C, X
train_data = [C_train, X_train]
val_data = [C_val, X_val]
else:
C_train, C_val, X_train, X_val, Y_train, Y_val = train_test_split(
C, X, Y, test_size=val_split, shuffle=True
)
if val_split > 0:
C_train, C_val, X_train, X_val, Y_train, Y_val = train_test_split(
C, X, Y, test_size=val_split, shuffle=True
)
else:
C_train, X_train, Y_train = C, X, Y
C_val, X_val, Y_val = C, X, Y
train_data = [C_train, X_train, Y_train]
val_data = [C_val, X_val, Y_val]
return train_data, val_data
Expand Down
2 changes: 1 addition & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ keywords = [
]
dependencies = [
'lightning>=2.0.0',
'torch>=2.0.0,<2.2.0',
'torch>=2.0.0',
'torchvision>=0.8.0',
'numpy>=1.19.0',
'pandas>=2.0.0',
Expand Down
Loading