Skip to content

Commit

Permalink
Merge pull request #32048 from jpata/mlpfproducer
Browse files Browse the repository at this point in the history
MLPF: first integration of EDProducer and training code
  • Loading branch information
cmsbuild authored Jan 4, 2021
2 parents f28e11e + e99db9c commit b1eb848
Show file tree
Hide file tree
Showing 18 changed files with 2,496 additions and 101 deletions.
4 changes: 4 additions & 0 deletions Configuration/ProcessModifiers/python/mlpf_cff.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
import FWCore.ParameterSet.Config as cms

# This modifier is for activating MLPF reconstruction in 2021
mlpf = cms.Modifier()
2 changes: 2 additions & 0 deletions Configuration/PyReleaseValidation/python/relval_2017.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,7 @@
# (Patatrack ECAL-only: TTbar - on CPU)
# (Patatrack HCAL-only: TTbar - on CPU)
# (TTbar 0T, TTbar PU 0T)
# (TTbar PU MLPF)
# (QCD 1.8TeV DeepCore)
# 2023 (TTbar, TTbar PU, TTbar PU premix)
# 2024 (TTbar, TTbar PU, TTbar PU premix)
Expand All @@ -61,6 +62,7 @@
11634.511,
11634.521,
11634.24,11834.24,
11834.13,
11634.17, #FIXME to 11723.17,
12434.0,12634.0,12634.99,
12834.0,13034.0,13034.99]
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -352,6 +352,30 @@ def condition(self, fragment, stepList, key, hasHarvest):
offset = 0.9,
)

# MLPF workflows
class UpgradeWorkflow_mlpf(UpgradeWorkflow):
def setup_(self, step, stepName, stepDict, k, properties):
if 'Reco' in step:
stepDict[stepName][k] = merge([self.step3, stepDict[step][k]])
def condition(self, fragment, stepList, key, hasHarvest):
return fragment=="TTbar_14TeV" and '2021' in key

upgradeWFs['mlpf'] = UpgradeWorkflow_mlpf(
steps = [
'Reco',
],
PU = [
'Reco',
],
suffix = '_mlpf',
offset = 0.13,
)
upgradeWFs['mlpf'].step3 = {
'--datatier': 'GEN-SIM-RECO,RECOSIM,MINIAODSIM,DQMIO',
'--eventcontent': 'FEVTDEBUGHLT,RECOSIM,MINIAODSIM,DQM',
'--procModifiers': 'mlpf'
}

# Patatrack workflows
class UpgradeWorkflowPatatrack(UpgradeWorkflow):
def condition(self, fragment, stepList, key, hasHarvest):
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -87,3 +87,9 @@
outputCommands = RecoParticleFlowFEVT.outputCommands + ['keep recoPFRecHits_particleFlowClusterECAL__*',
'keep recoPFRecHits_particleFlowRecHitHGC__*',
'keep *_simPFProducer_*_*'])

from Configuration.ProcessModifiers.mlpf_cff import mlpf
from RecoParticleFlow.PFProducer.mlpf_EventContent_cff import MLPF_RECO

mlpf.toModify(RecoParticleFlowRECO,
outputCommands = RecoParticleFlowRECO.outputCommands + MLPF_RECO.outputCommands)
5 changes: 5 additions & 0 deletions RecoParticleFlow/Configuration/python/RecoParticleFlow_cff.py
Original file line number Diff line number Diff line change
Expand Up @@ -86,4 +86,9 @@
e.toModify(pfPileUp, enable = cms.bool(False))


from Configuration.ProcessModifiers.mlpf_cff import mlpf
from RecoParticleFlow.PFProducer.mlpfProducer_cfi import mlpfProducer

_mlpfTask = cms.Task(mlpfProducer, particleFlowRecoTask.copy())

mlpf.toReplaceWith(particleFlowRecoTask, _mlpfTask)
67 changes: 67 additions & 0 deletions RecoParticleFlow/PFProducer/interface/MLPFModel.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,67 @@
#ifndef RecoParticleFlow_PFProducer_interface_MLPFModel
#define RecoParticleFlow_PFProducer_interface_MLPFModel

#include "FWCore/Framework/interface/Event.h"
#include "DataFormats/ParticleFlowReco/interface/PFBlockElement.h"
#include "DataFormats/ParticleFlowCandidate/interface/PFCandidate.h"

namespace reco::mlpf {
//The model takes the following number of features for each input PFElement
static constexpr unsigned int NUM_ELEMENT_FEATURES = 15;

//these are defined at model creation time and set the random LSH codebook size
static constexpr int NUM_MAX_ELEMENTS_BATCH = 20000;
static constexpr int LSH_BIN_SIZE = 100;

//In CPU mode, we only want to evaluate each event separately
static constexpr int BATCH_SIZE = 1;

//The model has 12 outputs for each particle:
// out[0-7]: particle classification logits
// out[8]: regressed eta
// out[9]: regressed phi
// out[10]: regressed energy
// out[11]: regressed charge logit
static constexpr unsigned int NUM_OUTPUTS = 12;
static constexpr unsigned int NUM_CLASS = 7;
static constexpr unsigned int IDX_ETA = 8;
static constexpr unsigned int IDX_PHI = 9;
static constexpr unsigned int IDX_ENERGY = 10;
static constexpr unsigned int IDX_CHARGE = 11;

//index [0, N_pdgids) -> PDGID
//this maps the absolute values of the predicted PDGIDs to an array of ascending indices
static const std::vector<int> pdgid_encoding = {0, 1, 2, 11, 13, 22, 130, 211};

//PFElement::type -> index [0, N_types)
//this maps the type of the PFElement to an ascending index that is used by the model to distinguish between different elements
static const std::map<int, int> elem_type_encoding = {
{0, 0},
{1, 1},
{2, 2},
{3, 3},
{4, 4},
{5, 5},
{6, 6},
{7, 7},
{8, 8},
{9, 9},
{10, 10},
{11, 11},
};

std::array<float, NUM_ELEMENT_FEATURES> getElementProperties(const reco::PFBlockElement& orig);
float normalize(float in);

int argMax(std::vector<float> const& vec);

reco::PFCandidate makeCandidate(int pred_pid, int pred_charge, float pred_e, float pred_eta, float pred_phi);

const std::vector<const reco::PFBlockElement*> getPFElements(const reco::PFBlockCollection& blocks);

void setCandidateRefs(reco::PFCandidate& cand,
const std::vector<const reco::PFBlockElement*> elems,
size_t ielem_originator);
}; // namespace reco::mlpf

#endif
3 changes: 3 additions & 0 deletions RecoParticleFlow/PFProducer/plugins/BuildFile.xml
Original file line number Diff line number Diff line change
Expand Up @@ -79,5 +79,8 @@
<use name="RecoParticleFlow/PFProducer"/>
<use name="RecoParticleFlow/PFTracking"/>
<use name="RecoEcal/EgammaCoreTools"/>
<use name="PhysicsTools/TensorFlow"/>
<use name="HeterogeneousCore/SonicCore"/>
<use name="HeterogeneousCore/SonicTriton"/>
<flags EDM_PLUGIN="1"/>
</library>
139 changes: 139 additions & 0 deletions RecoParticleFlow/PFProducer/plugins/MLPFProducer.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,139 @@
#include "FWCore/Framework/interface/Frameworkfwd.h"
#include "FWCore/Framework/interface/stream/EDProducer.h"
#include "FWCore/Framework/interface/Event.h"
#include "FWCore/Framework/interface/MakerMacros.h"

#include "DataFormats/ParticleFlowCandidate/interface/PFCandidate.h"
#include "PhysicsTools/TensorFlow/interface/TensorFlow.h"
#include "RecoParticleFlow/PFProducer/interface/MLPFModel.h"

struct MLPFCache {
const tensorflow::GraphDef* graph_def;
};

class MLPFProducer : public edm::stream::EDProducer<edm::GlobalCache<MLPFCache> > {
public:
explicit MLPFProducer(const edm::ParameterSet&, const MLPFCache*);
void produce(edm::Event& event, const edm::EventSetup& setup) override;
static void fillDescriptions(edm::ConfigurationDescriptions& descriptions);

// static methods for handling the global cache
static std::unique_ptr<MLPFCache> initializeGlobalCache(const edm::ParameterSet&);
static void globalEndJob(MLPFCache*);

private:
const edm::EDPutTokenT<reco::PFCandidateCollection> pfCandidatesPutToken_;
const edm::EDGetTokenT<reco::PFBlockCollection> inputTagBlocks_;
const std::string model_path_;
tensorflow::Session* session_;
};

MLPFProducer::MLPFProducer(const edm::ParameterSet& cfg, const MLPFCache* cache)
: pfCandidatesPutToken_{produces<reco::PFCandidateCollection>()},
inputTagBlocks_(consumes<reco::PFBlockCollection>(cfg.getParameter<edm::InputTag>("src"))),
model_path_(cfg.getParameter<std::string>("model_path")) {
session_ = tensorflow::createSession(cache->graph_def);
}

void MLPFProducer::produce(edm::Event& event, const edm::EventSetup& setup) {
using namespace reco::mlpf;

const auto& blocks = event.get(inputTagBlocks_);
const auto& all_elements = getPFElements(blocks);

const long long int num_elements_total = all_elements.size();

//tensor size must be a multiple of the bin size and larger than the number of elements
const auto tensor_size = LSH_BIN_SIZE * (num_elements_total / LSH_BIN_SIZE + 1);
assert(tensor_size <= NUM_MAX_ELEMENTS_BATCH);

//Create the input tensor
tensorflow::TensorShape shape({BATCH_SIZE, tensor_size, NUM_ELEMENT_FEATURES});
tensorflow::Tensor input(tensorflow::DT_FLOAT, shape);
input.flat<float>().setZero();

//Fill the input tensor
unsigned int ielem = 0;
for (const auto* pelem : all_elements) {
const auto& elem = *pelem;

//prepare the input array from the PFElement
const auto& props = getElementProperties(elem);

//copy features to the input array
for (unsigned int iprop = 0; iprop < NUM_ELEMENT_FEATURES; iprop++) {
input.tensor<float, 3>()(0, ielem, iprop) = normalize(props[iprop]);
}
ielem += 1;
}

//TF model input and output tensor names
const tensorflow::NamedTensorList input_list = {{"x:0", input}};
const std::vector<std::string> output_names = {"Identity:0"};

//Prepare the output tensor
std::vector<tensorflow::Tensor> outputs;

//run the GNN inference, given the inputs and the output.
//Note that the GNN enables information transfer between the input PFElements,
//such that the output ML-PFCandidates are in general combinations of the input PFElements, in the form of
//y_out = Adj.x_in, where x_in is input matrix (num_elem, NUM_ELEMENT_FEATURES), y_out is the output matrix (num_elem, NUM_OUTPUT_FEATURES)
//and Adj is an adjacency matrix between the elements that is constructed on the fly during model inference.
tensorflow::run(session_, input_list, output_names, &outputs);

//process the output tensor to ML-PFCandidates.
//The output can contain up to num_elem particles, with predicted PDGID=0 corresponding to no particles predicted.
const auto out_arr = outputs[0].tensor<float, 3>();

std::vector<reco::PFCandidate> pOutputCandidateCollection;
for (unsigned int ielem = 0; ielem < all_elements.size(); ielem++) {
//get the coefficients in the output corresponding to the class probabilities (raw logits)
std::vector<float> pred_id_logits;
for (unsigned int idx_id = 0; idx_id <= NUM_CLASS; idx_id++) {
pred_id_logits.push_back(out_arr(0, ielem, idx_id));
}

//get the most probable class PDGID
int pred_pid = pdgid_encoding[argMax(pred_id_logits)];

//get the predicted momentum components
float pred_eta = out_arr(0, ielem, IDX_ETA);
float pred_phi = out_arr(0, ielem, IDX_PHI);
float pred_charge = out_arr(0, ielem, IDX_CHARGE);
float pred_e = out_arr(0, ielem, IDX_ENERGY);

//a particle was predicted for this PFElement, otherwise it was a spectator
if (pred_pid != 0) {
auto cand = makeCandidate(pred_pid, pred_charge, pred_e, pred_eta, pred_phi);
setCandidateRefs(cand, all_elements, ielem);
pOutputCandidateCollection.push_back(cand);
}
} //loop over PFElements

event.emplace(pfCandidatesPutToken_, pOutputCandidateCollection);
}

std::unique_ptr<MLPFCache> MLPFProducer::initializeGlobalCache(const edm::ParameterSet& params) {
// this method is supposed to create, initialize and return a MLPFCache instance
std::unique_ptr<MLPFCache> cache = std::make_unique<MLPFCache>();

//load the frozen TF graph of the GNN model
std::string path = params.getParameter<std::string>("model_path");
auto fullPath = edm::FileInPath(path).fullPath();
LogDebug("MLPFProducer") << "Initializing MLPF model from " << fullPath;

cache->graph_def = tensorflow::loadGraphDef(fullPath);

return cache;
}

void MLPFProducer::globalEndJob(MLPFCache* cache) { delete cache->graph_def; }

void MLPFProducer::fillDescriptions(edm::ConfigurationDescriptions& descriptions) {
edm::ParameterSetDescription desc;
desc.add<edm::InputTag>("src", edm::InputTag("particleFlowBlock"));
desc.add<std::string>("model_path", "RecoParticleFlow/PFProducer/data/mlpf/mlpf_2020_11_04.pb");
descriptions.addWithDefaultLabel(desc);
}

DEFINE_FWK_MODULE(MLPFProducer);
8 changes: 8 additions & 0 deletions RecoParticleFlow/PFProducer/python/mlpf_EventContent_cff.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
import FWCore.ParameterSet.Config as cms

MLPF_RECO = cms.PSet(
outputCommands = cms.untracked.vstring(
'keep recoPFCandidates_mlpfProducer_*_*',
)
)

Loading

0 comments on commit b1eb848

Please sign in to comment.