Skip to content

PyTorch implementation for "Self-critical Proximal Sequence Training" for image captioning

Notifications You must be signed in to change notification settings

clu8/self-critical-ppo

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

95 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Self-critical Sequence Training for Image Captioning

This is an unofficial implementation for Self-critical Sequence Training for Image Captioning. The result of FC model can be replicated. (Not able to replicate Att2in result.)

The author helped me a lot when I tried to replicate the result. Great thanks. The latest topdown and att2in2 model can achieve 1.12 Cider score on Karpathy's test split after self-critical training.

This is based on my neuraltalk2.pytorch repository. The modifications is:

  • Add self critical training.

Requirements

Python 2.7 (because there is no coco-caption version for python 3) PyTorch 0.2 (along with torchvision)

You need to download pretrained resnet model for both training and evaluation. The models can be downloaded from here, and should be placed in data/imagenet_weights.

Pretrained models

Pretrained models are provided here. And the performances of each model will be maintained in this issue.

If you want to do evaluation only, then you can follow this section after downloading the pretrained models.

Train your own network on COCO

Download COCO dataset and preprocessing

First, download the coco images from link. We need 2014 training images and 2014 val. images. You should put the train2014/ and val2014/ in the same directory, denoted as $IMAGE_ROOT.

Download preprocessed coco captions from link from Karpathy's homepage. Extract dataset_coco.json from the zip file and copy it in to data/. This file provides preprocessed captions and also standard train-val-test splits.

Once we have these, we can now invoke the prepro_*.py script, which will read all of this in and create a dataset (two feature folders, a hdf5 label file and a json file).

$ python scripts/prepro_labels.py --input_json data/dataset_coco.json --output_json data/cocotalk.json --output_h5 data/cocotalk
$ python scripts/prepro_feats.py --input_json data/dataset_coco.json --output_dir data/cocotalk --images_root $IMAGE_ROOT

prepro_labels.py will map all words that occur <= 5 times to a special UNK token, and create a vocabulary for all the remaining words. The image information and vocabulary are dumped into data/cocotalk.json and discretized caption data are dumped into data/cocotalk_label.h5.

prepro_feats.py extract the resnet101 features (both fc feature and last conv feature) of each image. The features are saved in data/cocotalk_fc and data/cocotalk_att, and resulting files are about 200GB.

(Check the prepro scripts for more options, like other resnet models or other attention sizes.)

Warning: the prepro script will fail with the default MSCOCO data because one of their images is corrupted. See this issue for the fix, it involves manually replacing one image in the dataset.

Start training

$ python train.py --id fc --caption_model fc --input_json data/cocotalk.json --input_fc_dir data/cocotalk_fc --input_att_dir data/cocotalk_att --input_label_h5 data/cocotalk_label.h5 --batch_size 10 --learning_rate 5e-4 --learning_rate_decay_start 0 --scheduled_sampling_start 0 --checkpoint_path log_fc --save_checkpoint_every 6000 --val_images_use 5000 --max_epochs 30

The train script will dump checkpoints into the folder specified by --checkpoint_path (default = save/). We only save the best-performing checkpoint on validation and the latest checkpoint to save disk space.

To resume training, you can specify --start_from option to be the path saving infos.pkl and model.pth (usually you could just set --start_from and --checkpoint_path to be the same).

If you have tensorflow, the loss histories are automatically dumped into --checkpoint_path, and can be visualized using tensorboard.

The current command use scheduled sampling, you can also set scheduled_sampling_start to -1 to turn off scheduled sampling.

If you'd like to evaluate BLEU/METEOR/CIDEr scores during training in addition to validation cross entropy loss, use --language_eval 1 option, but don't forget to download the coco-caption code into coco-caption directory.

For more options, see opts.py.

A few notes on training. To give you an idea, with the default settings one epoch of MS COCO images is about 11000 iterations. After 1 epoch of training results in validation loss ~2.5 and CIDEr score of ~0.68. By iteration 60,000 CIDEr climbs up to about ~0.84 (validation loss at about 2.4 (under scheduled sampling)).

Train using self critical

First you should preprocess the dataset and get the cache for calculating cider score:

$ python scripts/prepro_ngrams.py --input_json .../dataset_coco.json --dict_json data/cocotalk.json --output_pkl data/coco-train --split train

And also you need to clone my forked cider repository.

Then, copy the model from the pretrained model using cross entropy. (It's not mandatory to copy the model, just for back-up)

$ bash scripts/copy_model.sh fc fc_rl

Then

$ python train.py --id fc_rl --caption_model fc --input_json data/cocotalk.json --input_fc_dir data/cocotalk_fc --input_att_dir data/cocotalk_att --input_label_h5 data/cocotalk_label.h5 --batch_size 10 --learning_rate 5e-5 --start_from log_fc_rl --checkpoint_path log_fc_rl --save_checkpoint_every 6000 --language_eval 1 --val_images_use 5000 --self_critical_after 30

You will see a huge boost on Cider score, : ).

A few notes on training. Starting self-critical training after 30 epochs, the CIDEr score goes up to 1.05 after 600k iterations (including the 30 epochs pertraining).

Caption images after training

Generate image captions

Evaluate on raw images

Now place all your images of interest into a folder, e.g. blah, and run the eval script:

$ python eval.py --model model.pth --infos_path infos.pkl --image_folder blah --num_images 10

This tells the eval script to run up to 10 images from the given folder. If you have a big GPU you can speed up the evaluation by increasing batch_size. Use --num_images -1 to process all images. The eval script will create an vis.json file inside the vis folder, which can then be visualized with the provided HTML interface:

$ cd vis
$ python -m SimpleHTTPServer

Now visit localhost:8000 in your browser and you should see your predicted captions.

Evaluate on Karpathy's test split

$ python eval.py --dump_images 0 --num_images 5000 --model model.pth --infos_path infos.pkl --language_eval 1 

The defualt split to evaluate is test. The default inference method is greedy decoding (--sample_max 1), to sample from the posterior, set --sample_max 0.

Beam Search. Beam search can increase the performance of the search for greedy decoding sequence by ~5%. However, this is a little more expensive. To turn on the beam search, use --beam_size N, N should be greater than 1.

Miscellanea

Using cpu. The code is currently defaultly using gpu; there is even no option for switching. If someone highly needs a cpu model, please open an issue; I can potentially create a cpu checkpoint and modify the eval.py to run the model on cpu. However, there's no point using cpu to train the model.

Train on other dataset. It should be trivial to port if you can create a file like dataset_coco.json for your own dataset.

Live demo. Not supported now. Welcome pull request.

Acknowledgements

Thanks the original neuraltalk2 and awesome PyTorch team.

SCST-PPO: Commands

FC model CE pretrain
python train.py --id fc --caption_model fc --input_json data/cocotalk.json --input_fc_dir data/cocotalk_fc --input_att_dir data/cocotalk_att --input_label_h5 data/cocotalk_label.h5 --batch_size 128 --learning_rate 5e-4 --learning_rate_decay_start 0 --scheduled_sampling_start 0 --checkpoint_path save/log_fc --save_checkpoint_every 1000 --val_images_use 5000 --max_epochs 25

FC model RL finetune
python train.py --id fc_rl --caption_model fc --input_json data/cocotalk.json --input_fc_dir data/cocotalk_fc --input_att_dir data/cocotalk_att --input_label_h5 data/cocotalk_label.h5 --batch_size 64 --learning_rate 5e-5 --start_from save/log_fc_rl --checkpoint_path save/log_fc_rl --save_checkpoint_every 2000 --language_eval 1 --val_images_use 5000 --self_critical_after 24 --language_eval 1

FC model PPO4 finetune
python train.py --id fc_ppo4 --caption_model fc --input_json data/cocotalk.json --input_fc_dir data/cocotalk_fc --input_att_dir data/cocotalk_att --input_label_h5 data/cocotalk_label.h5 --batch_size 64 --learning_rate 5e-5 --start_from save/log_fc_ppo4 --checkpoint_path save/log_fc_ppo4 --save_checkpoint_every 2000 --language_eval 1 --val_images_use 5000 --self_critical_after 24 --language_eval 1 --ppo 1 --ppo_iters 4 --drop_prob_lm 0

FC model PPO8 finetune
python train.py --id fc_ppo8 --caption_model fc --input_json data/cocotalk.json --input_fc_dir data/cocotalk_fc --input_att_dir data/cocotalk_att --input_label_h5 data/cocotalk_label.h5 --batch_size 64 --learning_rate 5e-5 --start_from save/log_fc_ppo8 --checkpoint_path save/log_fc_ppo8 --save_checkpoint_every 2000 --language_eval 1 --val_images_use 5000 --self_critical_after 24 --language_eval 1 --ppo 1 --ppo_iters 8 --drop_prob_lm 0

Att2in2 model CE pretrain
python train.py --id att2in2 --caption_model att2in2 --input_json data/cocotalk.json --input_fc_dir data/cocotalk_fc --input_att_dir data/cocotalk_att --input_label_h5 data/cocotalk_label.h5 --batch_size 64 --learning_rate 5e-4 --learning_rate_decay_start 0 --scheduled_sampling_start 0 --checkpoint_path save/log_att2in2 --save_checkpoint_every 2000 --val_images_use 5000 --max_epochs 20

Att2in2 model RL finetune
python train.py --id att2in2_rl --caption_model att2in2 --input_json data/cocotalk.json --input_fc_dir data/cocotalk_fc --input_att_dir data/cocotalk_att --input_label_h5 data/cocotalk_label.h5 --batch_size 64 --learning_rate 5e-5 --start_from save/log_att2in2_rl --checkpoint_path save/log_att2in2_rl --save_checkpoint_every 2000 --language_eval 1 --val_images_use 5000 --self_critical_after 19 --language_eval 1

Att2in2 model PPO4 finetune
python train.py --id att2in2_ppo4 --caption_model att2in2 --input_json data/cocotalk.json --input_fc_dir data/cocotalk_fc --input_att_dir data/cocotalk_att --input_label_h5 data/cocotalk_label.h5 --batch_size 64 --learning_rate 5e-5 --start_from save/log_att2in2_ppo4 --checkpoint_path save/log_att2in2_ppo4 --save_checkpoint_every 2000 --language_eval 1 --val_images_use 5000 --self_critical_after 19 --language_eval 1 --ppo 1 --ppo_iters 4 --drop_prob_lm 0

Att2in2 model PPO8 finetune
python train.py --id att2in2_ppo8 --caption_model att2in2 --input_json data/cocotalk.json --input_fc_dir data/cocotalk_fc --input_att_dir data/cocotalk_att --input_label_h5 data/cocotalk_label.h5 --batch_size 64 --learning_rate 5e-5 --start_from save/log_att2in2_ppo8 --checkpoint_path save/log_att2in2_ppo8 --save_checkpoint_every 2000 --language_eval 1 --val_images_use 5000 --self_critical_after 19 --language_eval 1 --ppo 1 --ppo_iters 8 --drop_prob_lm 0

Eval
python eval.py --model save/log_fc_ppo8/model-best.pth --infos_path save/log_fc_ppo8/infos_fc_ppo8-best.pkl --dump_images 0 --num_images 5000 --language_eval 1 --cuda_device 1

Generate caption
python eval.py --model save/log_fc_ppo8/model-best.pth --infos_path save/log_fc_ppo8/infos_fc_ppo8-best.pkl --image_folder images --num_images 3

About

PyTorch implementation for "Self-critical Proximal Sequence Training" for image captioning

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.6%
  • HTML 1.3%
  • Shell 0.1%