Skip to content

李航《统计学习方法》书的每一章节核心提炼以及Python代码实现,可以直接运行在Anaconda的Jupyter里面,从即日起抽时间不断更新,详见Readme.

Notifications You must be signed in to change notification settings

cleghom/Statistical-learning-method

Repository files navigation

统计学习方法:Statistical-learning-method

李航《统计学习方法》书的每一章节核心提炼以及Python代码实现,可以直接运行在Anaconda的Jupyter里面,从即日起抽时间不断更新.
This is a set of tutorials and implementations about Li Hang's Book "Statistical-learning-method". You can download the ipynb type files and run direactly on the Anaconda Python environment like Jupyter-lab or Jupyter-notebook. This tutorials will be continuously updated.

教程和代码实现按照如下列表安排,基本按照《统计学习方法》
The tutorials and implements are sorted and named according to the original book Statistical-learning-method

Chapter English Name Chinese Name Link Completion
Chapter1 Summary 摘要 Open 100%
Chapter2 Perceptron 感知机算法 Open 100%
Chapter3 KNN K近临算法 Open 100%
Chapter4 Naive Bayes 朴素贝叶斯算法 Open 100%
Chapter5 Decision Tree 决策树算法 Open 100%
Chapter6 Logical regression and maximum entropy model 逻辑回归和最大熵模型 Open 50%
Chapter7 Support vector machine 支持向量机算法 Open 50%
Chapter8 Boosting 提升算法
Chapter9 EM 期望最大化算法
Chapter10 HMM 隐马尔可夫算法
Chapter11 CRF 条件随机场

Contact with me:


About

李航《统计学习方法》书的每一章节核心提炼以及Python代码实现,可以直接运行在Anaconda的Jupyter里面,从即日起抽时间不断更新,详见Readme.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published