Skip to content

Quantitative evaluation of disentangled representations

License

Notifications You must be signed in to change notification settings

cianeastwood/qedr

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Quantitative Evaluation of Disentangled Representations

Code to reproduce the results in our ICLR 2018 paper: A Framework for the Quantitative Evaluation of Disentangled Representations.

Prerequisites

  • Python 2.7.5+/3.5+, NumPy, TensorFlow 1.0+, SciPy, Matplotlib, Scikit-learn

Data

  • Download here.
    • If RAM < 10GB, convert .npz to .jpeg before training to load batches of images into memory (rather than entire dataset)
      • python npz_to_jpeg.py (after editing paths)
  • Generated using this renderer.

Models

Train

  • PYTHONPATH=[/path/to/qedr/] python main.py

Save codes

  • PYTHONPATH=[/path/to/qedr/] python main.py --save_codes

Quantitative Evaluation

  • quantify.ipynb

About

Quantitative evaluation of disentangled representations

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published