This is demo code for my talk at Open Source Summit NA 2019.
"Machine Learning Made Easy on Kubernetes. DevOps for Data Scientists," August 21, 2019
- Robert Baratheon (robert-baratheon)
- Tyrion Lannister (tyrion-lannister)
- Jon Snow (jon-snow)
- Daenerys Targaryen (daenerys-targaryen)
- Hodor (hodor)
- Samwell Tarley (samwell-tarley)
- Cersei Lannister (cersei-lannister)
- Theon Greyjoy (theon-greyjoy)
- Night King (night-king)
- Arya Stark (arya-stark)
- Benjen Stark (benjen-stark)
- Jamie Lannister (jamie-lannister)
- Margaery Tyrell (margaery-tyrell)
- Sansa Stark (sansa-stark)
-
Testing in local Docker container interactively
docker run -it --rm --name got \ --publish 6006:6006 \ --publish 5000:5000 \ --volume /Users/brianredmond/gopath/src/github.com/chzbrgr71/got-image-classification:/got-image-classification \ --workdir /got-image-classification \ tensorflow/tensorflow:1.13.1 python ./training/retrain.py \ --bottleneck_dir=/got-image-classification/tf-output/bottlenecks \ --model_dir=/tmp/tensorflow/inception \ --summaries_dir=/got-image-classification/tf-output \ --output_graph=/got-image-classification/tf-output \ --output_labels=/got-image-classification/tf-output \ --image_dir=/got-image-classification/training/images \ --saved_model_dir=/got-image-classification/tf-output \ --how_many_training_steps 2000 python ./preprocess/processimages.py \ --bottleneck_dir=/got-image-classification/tf-output/bottlenecks \ --image_dir=/got-image-classification/preprocess/images # or conda source activate tf python ./training/retrain.py \ --bottleneck_dir=./tf-output/bottlenecks \ --model_dir=./tf-output/inception \ --summaries_dir=./tf-output \ --output_graph=./tf-output \ --output_labels=./tf-output \ --image_dir=./training/images \ --saved_model_dir=./tf-output \ --how_many_training_steps 2000 tensorboard --logdir=/got-image-classification/tf-output/training_summaries
-
Create preprocess container image
# set image tag depending on target cpu/gpu export IMAGE_TAG=2.00 export ACRNAME=gotcr # build/push (ACR or Docker) az acr build -t chzbrgr71/got-image-preprocess:$IMAGE_TAG -r $ACRNAME ./preprocess docker build -t chzbrgr71/got-image-preprocess:$IMAGE_TAG -f ./preprocess/Dockerfile ./preprocess docker push chzbrgr71/got-image-preprocess:$IMAGE_TAG
-
Create training container image
# set image tag depending on target cpu/gpu export IMAGE_TAG=2.0 export IMAGE_TAG=2.00-gpu export ACRNAME=gotcr # build/push (ACR or Docker) az acr build -t chzbrgr71/got-image-training:$IMAGE_TAG -r $ACRNAME ./training docker build -t chzbrgr71/got-image-training:$IMAGE_TAG -f ./training/Dockerfile ./training docker push chzbrgr71/got-image-training:$IMAGE_TAG
-
Create scoring container image
# set image tag depending on target cpu/gpu export IMAGE_TAG=2.01 export ACRNAME=gotcr # build/push (ACR or Docker) az acr build -t chzbrgr71/got-model-scoring:$IMAGE_TAG -r $ACRNAME ./serving docker build -t chzbrgr71/got-model-scoring:$IMAGE_TAG -f ./serving/Dockerfile ./serving docker push chzbrgr71/got-model-scoring:$IMAGE_TAG docker run -d --name score --volume /Users/brianredmond/gopath/src/github.com/chzbrgr71/got-image-classification:/got-image-classification chzbrgr71/got-model-scoring:$IMAGE_TAG '/got-image-classification/tf-output/latest_model'
-
Test local
docker run -d --name process --volume /Users/brianredmond/gopath/src/github.com/chzbrgr71/got-image-classification:/got-image-classification chzbrgr71/got-image-preprocess:$IMAGE_TAG "--bottleneck_dir=/got-image-classification/tf-output/bottlenecks" "--image_dir=/got-image-classification/preprocess/images"
docker run -d --name train --volume /Users/brianredmond/gopath/src/github.com/chzbrgr71/got-image-classification:/got-image-classification chzbrgr71/got-image-training:$IMAGE_TAG "--bottleneck_dir=/tmp/tensorflow/bottlenecks" "--model_dir=/tmp/tensorflow/inception" "--summaries_dir=/got-image-classification/tf-output/training_summaries/baseline" "--output_graph=/got-image-classification/tf-output/retrained_graph.pb" "--output_labels=/got-image-classification/tf-output/retrained_labels.txt" "--image_dir=/images" "--saved_model_dir=/got-image-classification/tf-output/saved_models/1"
-
Tensorboard local
export IMAGE_TAG=2.00 export ACRNAME=gotcr # build/push (ACR or Docker) az acr build -t chzbrgr71/tensorboard:$IMAGE_TAG -r $ACRNAME -f ./tensorboard/Dockerfile ./tensorboard docker build -t chzbrgr71/tensorboard:$IMAGE_TAG -f ./tensorboard/Dockerfile ./tensorboard docker push chzbrgr71/tensorboard:$IMAGE_TAG # run docker run -d --name tb -p 6006:6006 --volume /Users/brianredmond/gopath/src/github.com/chzbrgr71/got-image-classification/tf-output:/tf-output chzbrgr71/tensorboard:$IMAGE_TAG "--logdir" "/tf-output/training_summaries"
-
Create Azure Kubernetes Service
-
Use node pools to add GPU nodes. https://docs.microsoft.com/en-us/azure/aks/use-multiple-node-pools
-
Add Virtual Node add-on
export VK_RELEASE=virtual-kubelet-latest export CHART_URL=https://github.com/virtual-kubelet/virtual-kubelet/raw/master/charts/$VK_RELEASE.tgz helm install --name vk "$CHART_URL" --namespace kube-system -f ./k8s/vk-helm-values.yaml
-
Enable GPU's with daemonset. https://docs.microsoft.com/en-us/azure/aks/gpu-cluster
kubectl create namespace gpu-resources kubectl apply -f ./k8s/nvidia-device-plugin-ds.yaml
-
-
Storage (Azure Files Static)
Azure Files Docs: https://docs.microsoft.com/en-us/azure/aks/azure-files-volume
export AKS_PERS_STORAGE_ACCOUNT_NAME=briarmlwestnew export AKS_PERS_RESOURCE_GROUP=oss-summit-west-new export AKS_PERS_LOCATION=westus export AKS_PERS_SHARE_NAME=aksshare # Create the storage account az storage account create -n $AKS_PERS_STORAGE_ACCOUNT_NAME -g $AKS_PERS_RESOURCE_GROUP -l $AKS_PERS_LOCATION --sku Standard_LRS # Export the connection string as an environment variable, this is used when creating the Azure file share export AZURE_STORAGE_CONNECTION_STRING=`az storage account show-connection-string -n $AKS_PERS_STORAGE_ACCOUNT_NAME -g $AKS_PERS_RESOURCE_GROUP -o tsv` # Create the file share az storage share create -n $AKS_PERS_SHARE_NAME # Get storage account key STORAGE_KEY=$(az storage account keys list --resource-group $AKS_PERS_RESOURCE_GROUP --account-name $AKS_PERS_STORAGE_ACCOUNT_NAME --query "[0].value" -o tsv) # Echo storage account name and key echo Storage account name: $AKS_PERS_STORAGE_ACCOUNT_NAME echo Storage account key: $STORAGE_KEY kubectl create secret generic azure-file-secret --from-literal=azurestorageaccountname=$AKS_PERS_STORAGE_ACCOUNT_NAME --from-literal=azurestorageaccountkey=$STORAGE_KEY kubectl create secret generic azure-file-secret --from-literal=azurestorageaccountname=$AKS_PERS_STORAGE_ACCOUNT_NAME --from-literal=azurestorageaccountkey=$STORAGE_KEY --namespace kubeflow # Add persistent volume kubectl apply -f ./k8s/persistent-volume.yaml
-
Kubernetes job
kubectl apply -f ./k8s/job-preprocess.yaml kubectl apply -f ./k8s/job-training.yaml kubectl apply -f ./k8s/tensorboard.yaml
-
Install Kubeflow (I am using v0.5.0) https://www.kubeflow.org/docs/started/getting-started-k8s
export KFAPP=kf-app-got-3 kfctl init ${KFAPP} cd ${KFAPP} kfctl generate all -V kfctl apply all -V
-
Validate Kubeflow
kubectl -n kubeflow get all
-
Execute TFJob
# cpu kubectl apply -f ./k8s/tfjob-training.yaml # gpu kubectl apply -f ./k8s/tfjob-training-gpu.yaml # aci kubectl apply -f ./k8s/tfjob-training-vk.yaml # Azure Premium Files kubectl apply -f ./k8s/tfjob-training-prem.yaml
-
Deploy Serving
kubectl apply -f ./k8s/serving.yaml
docker cp tf-output/latest_model/exported_model serving_base:/models/inception docker commit --change "ENV MODEL_NAME inception" serving_base chzbrgr71/got-tfserving:1.0
-
Deploy Tensorboard
kubectl apply -f ./k8s/tensorboard.yaml
-
Kubeflow Pipelines
-
Create a clean Python 3 environment
conda create --name mlpipeline python=3.7 source activate mlpipeline pip install -r ./pipelines/requirements.txt --upgrade
-
Compile pipeline
source activate mlpipeline python3 ./pipelines/pipeline.py
-
For now, there are a couple manual edits needed on the pipeline.yaml
- environment variables (KUBE_POD_NAME in training)
- volumes for Azure files
-
-
Via port-forward to notebook instance
kubectl port-forward brian-testing-01-0 -n kubeflow 8888:8888
-
Access via Traefik ingress. http://jupyter.brianredmond.io/notebook/kubeflow/brian-testing-01
-
Using Helm chart and AKS Virtual Nodes with GPU:
helm install --name hyperparam ./hyperparameter/chart kubectl apply -f ./hyperparameter/tensorboard-hp.yaml
-
katib
kubectl apply -f ./katib/random-example.yaml kubectl apply -f ./katib/got.yaml
-
Local python script
# testing python ./serving/label-image.py ./serving/benjen.jpg hodor (score = 0.35062) benjen stark (score = 0.21019) samwell tarley (score = 0.13798) jon snow (score = 0.10155) robert baratheon (score = 0.04643) theon greyjoy (score = 0.04288) daenerys targaryen (score = 0.03613) tyrion lannister (score = 0.02663) night king (score = 0.02428) margaery tyrell (score = 0.00809) cersei lannister (score = 0.00707) arya stark (score = 0.00544) sansa stark (score = 0.00271)
-
TF Serving (Local)
docker run -d --name serving \ --publish 8500:8500 \ --volume /Users/brianredmond/gopath/src/github.com/chzbrgr71/got-image-classification/tf-output/saved_models:/models/inception \ --env MODEL_NAME=inception \ tensorflow/serving:1.13.0
python serving/inception_client.py --server localhost:8500 --image ./serving/hodor.jpg python serving/inception_client.py --server localhost:8500 --image ./serving/tyrion.jpg python serving/inception_client.py --server localhost:8500 --image ./serving/night-king.jpg
-
TF Serving (AKS)
kubectl apply -f ./k8s/serving.yaml python serving/inception_client.py --server 104.45.210.253:8500 --image ./serving/night-king.jpg python serving/inception_client.py --server gotserving.brianredmond.io:8500 --image ./serving/jon-snow.jpg python serving/inception_client.py --server gotserving.brianredmond.io:8500 --image ./serving/benjen.jpg
# serving api metadata curl http://gotserving.eastus.azurecontainer.io:8501/v1/models/inception/versions/1/metadata # convert image to base64: https://onlinepngtools.com/convert-png-to-base64 curl -X POST http://gotserving.eastus.azurecontainer.io:8501/v1/models/inception:predict -d "@./serving/daenerys-targaryen.json" curl -X POST http://gotserving.brianredmond.io:8501/v1/models/inception:predict -d "@./serving/daenerys-targaryen.json" curl -X POST http://104.45.210.253:8501/v1/models/inception:predict -d "@./serving/daenerys-targaryen.json"
-
Web App
export IMAGE_TAG=2.01 export ACRNAME=gotcr # build/push (ACR or Docker) az acr build -t chzbrgr71/got-web-app:$IMAGE_TAG -r $ACRNAME ./webapp docker build -t chzbrgr71/got-web-app:$IMAGE_TAG -f ./webapp/Dockerfile ./webapp docker push chzbrgr71/got-web-app:$IMAGE_TAG docker run -d --name web -p 3000:3000 -e ML_SERVING_ENDPOINT=http://gotserving.brianredmond.io:8501/v1/models/inception:predict chzbrgr71/got-web-app:$IMAGE_TAG kubectl apply -f ./k8s/web.yaml az webapp config appsettings set --name got-web -g game-of-thrones --settings ML_SERVING_ENDPOINT='http://gotserving.brianredmond.io:8501/v1/models/inception:predict'
-
-
Convert model
IMAGE_SIZE=299 tflite_convert \ --graph_def_file=./tf-output/latest_model/got_retrained_graph.pb \ --output_file=./tf-output/latest_model/optimized_graph.lite \ --input_format=TENSORFLOW_GRAPHDEF \ --output_format=TFLITE \ --input_shape=1,${IMAGE_SIZE},${IMAGE_SIZE},3 \ --input_array=Mul \ --output_array=final_result \ --inference_type=FLOAT \ --input_data_type=FLOAT
-
In container
export IMAGE_TAG=2.00 export ACRNAME=gotcr # build/push (ACR or Docker) az acr build -t chzbrgr71/tflite-convert:$IMAGE_TAG -r $ACRNAME -f ./convert/Dockerfile ./convert docker build -t chzbrgr71/tflite-convert:$IMAGE_TAG -f ./convert/Dockerfile ./convert docker push chzbrgr71/tflite-convert:$IMAGE_TAG # run docker run -d --name convert --volume /Users/brianredmond/gopath/src/github.com/chzbrgr71/got-image-classification/tf-output:/tf-output chzbrgr71/tflite-convert:$IMAGE_TAG \ --graph_def_file=./tf-output/latest_model/got_retrained_graph.pb \ --output_file=./tf-output/latest_model/optimized_graph.lite \ --input_format=TENSORFLOW_GRAPHDEF \ --output_format=TFLITE \ --input_shape=1,299,299,3 \ --input_array=Mul \ --output_array=final_result \ --inference_type=FLOAT \ --input_data_type=FLOAT
kubectl apply -f ./k8s/convert.yaml
-
This doesn't work at all:
source activate mlpipeline python -m tf2onnx.convert \ --saved-model ./tf-output/latest_model/exported_model/1/ \ --output ./tf-output/onnx/model.onnx \ --verbose python -m tf2onnx.convert \ --input ./tf-output/latest_model/got_retrained_graph.pb \ --inputs DecodeJpeg/contents:0 \ --outputs final_result:0 \ --output ./tf-output/onnx/model.onnx \ --verbose saved_model_cli show --dir /got-image-classification/tf-output/latest_model/exported_model/1/ --tag_set serve --signature_def serving_default export IMAGE_TAG=2.00 export ACRNAME=gotcr # build/push (ACR or Docker) az acr build -t chzbrgr71/onnx-convert:$IMAGE_TAG -r $ACRNAME -f ./onnx/Dockerfile ./onnx docker build -t chzbrgr71/onnx-convert:$IMAGE_TAG -f ./onnx/Dockerfile ./onnx docker push chzbrgr71/onnx-convert:$IMAGE_TAG docker run -d --name onnx --volume /Users/brianredmond/gopath/src/github.com/chzbrgr71/got-image-classification:/got-image-classification chzbrgr71/onnx-convert:1.1 "show" "--dir" "/got-image-classification/tf-output/latest_model/exported_model/1/" "--tag_set" "serve" "--signature_def" "serving_default"
-
This doesn't work at all:
pip install tensorflowjs==0.8.5 --force-reinstall pip install tensorflowjs==1.0.1 --force-reinstall tensorflowjs_converter \ --input_format=tf_saved_model \ --output_format=tfjs_graph_model \ --skip_op_check SKIP_OP_CHECK \ ./tf-output/latest_model/got_retrained_graph.pb \ ./tf-output/javascript tensorflowjs_converter \ --input_format=tf_saved_model \ --output_format=tfjs_graph_model \ --skip_op_check SKIP_OP_CHECK \ ./tf-output/latest_model/exported_model/1 \ ./tf-output/javascript --output_node_names='final_result' \
From: https://gameofthrones.fandom.com
Image downloader: https://github.com/teracow/googliser
https://codelabs.developers.google.com/codelabs/tensorflow-for-poets/#0
https://www.tensorflow.org/lite/guide/get_started
https://becominghuman.ai/creating-restful-api-to-tensorflow-models-c5c57b692c10
https://codelabs.developers.google.com/codelabs/tensorflowjs-teachablemachine-codelab/index.html#0
https://www.tensorflow.org/hub/tutorials/image_retraining
https://github.com/vabarbosa/tfjs-model-playground/tree/master/image-segmenter/demo