Authors: Chun-Hao To, Ethan Nadler
We recommend using python3 and a virtual env. See instructions here.
virtualenv -p python3 .env
source .env/bin/activate
pip install -r requirements.txt
When you're done working on the project, deactivate the virtual environment with deactivate
.
Given an n-body simulation, predict the stellar mass function of the same universe.
##Build dataset
python build_dataset.py --data_dir data/subdir --output_dir data/output
- Train your experiment. Simply run
python train.py --data_dir data/experiment1.1/datavector_original_split/ --model_dir ./experiments/test/ --restore_file best
It will instantiate a model and train it on the training set following the hyperparameters specified in params.json
. It will also evaluate some metrics on the validation set.
- Random forest. simply run
python bach_resnetsearch.py