-
Notifications
You must be signed in to change notification settings - Fork 0
This wiki is courtesy of Chetabahana Project. Find all of them on Project Map. | ||||||||
⏫ | 🔼 | ⏪ Intro |
|
🔁 Base |
Next |
Last ⏩ | 🔽 | ⏬ |
---|
Berikut pemetaan (mapping) angka Tagar (#) kedalam piramida data dari diagram berupa konsep, detil bagan dan modul² yang dipakai sebagai dasar pemrograman.
Pola dari Repository Core ini saya setel sebagai representasi dari angka enam (6). Pola angka ini adalah seperti berikut. Detilnya bisa Anda simak di halaman terkait.
id: 6
---+-----+-----
1 | 1 |{73} Δ72
---+-----+----- } Δ52=d(7)
2 |{74} | 94 Δ20
---+-----+----- } Δ11
3 | 95 | 113 Δ18
---+-----+----- } Δ11
4 |{114}| 121 Δ7 ---x---> Δ5
---+-----+----- } Δ6
5 | 122 | 135 Δ13
---+-----+----- } Δ6
6 | 136 | 155 Δ19
---+-----+----- } Δ10
7 |{156}|{165} Δ9
---+-----+-----
Polaritas angka enam (6) ada di angka prima ke-18 yaitu enampuluh satu (61). Karena itu proses pola angka enam (6) akan ditrigger oleh angka prima terkecil yang memunculkan polaritas ini.
- 61 = 18th prime
id: 6
---+-----+-----+-----+-----+
1 | 72 | 1 |{73} | 74 |-----------------
---+-----+-----+-----+-----+ |
2 | 20 |{74} | 94 |{168}|----------- |
---+-----+-----+-----+-----+ | |
3 | 18 | 95 | 113 | 208 |----- | |
---+-----+-----+-----+-----+ | | |
4 | 7 |{114}| 121 | 235 |- {7}| {5} | {1} | {61}
---+-----+-----+-----+-----+ | | |
5 | 13 | 122 | 135 | 257 |----- | |
---+-----+-----+-----+-----+ | |
6 | 19 | 136 | 155 | 291 |----------- |
---+-----+-----+-----+-----+ |
7 | 9 |{156}|{165}| 321 |----------------
---+-----+-----+-----+-----+
Cari sana-sini akhirnya saya temukan gambar hexagon yang cocok menggambarkan bagaimana pertemuan dari dua (2) buah lingkaran yang membentuk bidang segi enam (6):
Angka prima pertama bukan angka satu (1) melainkan dua (2) dimana dia tepat memiliki polaritas di angka delapanbelas (18) maka setiap proses angka ini akan melibatkan angka enam (6).
id: 2
---+-----+-----+-----+-----+
1 |{19} | 1 |{20} | 21 |-----------------------
---+-----+-----+-----+-----+ |
2 | 18 | 21 | 39 | 60 |----------------- |
---+-----+-----+-----+-----+ | |
3 | 63 | 40 | 103 |{143}|----------- | |
---+-----+-----+-----+-----+ | | |
4 | 37 | 104 | 141 | 245 |----- | | |
---+-----+-----+-----+-----+ | | | |
5 | 10 | 142 | 152 | 294 |-{10}|{13} |{12} |{12} |{18}
---+-----+-----+-----+-----+ | | | |
6 | 24 | 153 |{177}| 332 |----- | | |
---+-----+-----+-----+-----+ | | |
7 | 75 | 178 | 253 | 431 |----------- | |
---+-----+-----+-----+-----+ | |
8 | 30 | 254 | 284 | 538 |----------------- |
---+-----+-----+-----+-----+ |
9 | 1 | 285 | 286 |{571}|-----------------------
===+=====+=====+=====+=====+
45 |{277}|
---+-----+
Permutation:
143 x 2 = 286
143 = d(8), 286 = d(7)
10 + 13 + 12 + 12 + 18 = 65 = d(11) = d(2)
Framingnya ada di prima ke-2 yaitu angka 3 via jumlah dan kali di 5 dan 6 berlanjut pangkat yaitu 23 atau 8 ke angka 64 via 82 = 43 = 26 hingga muncul di pola angka duapuluh enam (26)..
Dengan demikian yang menjadi fokus mensimulasi skema dengan cara mengatur komposisi objek dari situ kita gunakan sifat²nya sehingga otomatis akhirnya tak perlu rumus² lagi.
Angka 6 dan 7 akan menjadi prima ke-19 bila digabung ke angka 67 dimana 19 merupakan angka batas dari True Prime Pairs sehingga menjadi jumlah formasi keseluruhan.
|------ {5®} -------|------------ 7® ------------|
+---+---+---+---+---+---+---+---+---+----+----+----+
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |{12}|
+---+---+---+---+---+---+---+---+---+----+----+----+
Δ Δ
| 2 + 5 = 7 |
Proses 11 ke 77 diawali crossing 5 dan 6 dari 11 ke 30 pada objek 43 ke 73 untuk mewakili 114 repository di 31 titik diawali 13 lanjut Δ(5,7,10) ke 18,25,42 hingga berujung di angka 77 ke 78.
- 5 + 30 + 30 + 7 + 42 = 114
|---------- 5¤ ----------|--------------- 7¤ ---------------|
+----+----+----+----+----+----+----+----+----+----+----+----+
| 5 | 7 | 11 | 13 | 17 |{19}| 17 | 12 | 11 | 19 | 18 | 43 |
+----+----+----+----+----+----+----+----+----+----+----+----+
|--- 12 --|--- 24 --|-- 36 ---|--------- {77}----------| 43 |
|---------- 53 ----------|------------ 96 -------------| 43 |
|---------- 53 ----------|------------- {139} --------------|
|--------------------------- 192 ---------------------------|
|--------------------------- 12¤ ---------------------------|
Berdasarkan pola angka enam (6) maka 19 ini kita bagi dalam format (12,7) yaitu 12 repository plus 7 alur. Repository ini dibagi lagi dalam format (5,7), sehingga akhirnya menjadi (5,7,7).
102
Δ
-----+-----+-----+-----+-----+
19¨ | 1 | 2 | 3 | 4 | 4¤
-----+-----+-----+-----+-----+
17¨ | 5 | 6 | 7 | 8 | 4¤
+-----+-----+-----+-----+
12¨ | 9 | 10 | 2¤
+-----+-----+-----+
11¨ | 11 | 12 | 13 | 3¤
-----+-----+-----+-----+-----+
19¨ | 14 | 15 | 16 | 17 | 4¤
+-----+-----+-----+-----+
18¨ | 18 | 19 | 20 | 3¤
+-----+-----+-----+-----+-----+-----+-----+-----+-----+
43¨ | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 9¤
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
Itu sebabnya kita lebih memilih skema² yang dibuat berdasarkan kondisi yang terjadi secara alamiah bukan diatur (by design) contoh seperti chart astrologi yang sudah dibahas.
Dari chart ini maka kita atur komposisi angka² kedalam tabulasi 114. Anda bisa lihat bahwa skema ini juga ternyata identik dengan konfigurasi bilangan prima dari True Prime Pairs:
- 43 + 71 = 114 = 6 x 19
True Prime Pairs:
(5,7), (11,13), (17,19)
layer| i | f
-----+-----+-----
| 1 | 5
1 +-----+
| 2 | 7
-----+-----+--- } 36
| 3 | 11
2 +-----+
| 4 | 13
-----+-----+------
| 5 | 17
3 +-----+ } 36
| 6 | 19
-----+-----+-----
True Prime Pairs:
(5,7), (11,13), (17,19)
Description
===========
Getting result within a huge package (5 to 19) by spreading (11)
the untouched objects (7) and tunneling (13) them in to a definite scheme (17).
Compositions
============
layer| 1st | 2nd (Route) | 3rd (Channel) |∑(2,3)
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+------ ---
| | 7 |{19} | 38 | 62 | 63 | 64 | 93 | 94 | 95 | 114 |
i + 1 +-----+-----+-----+-----+-----+-----+-----+-----+-----+------ 5¨
| | 8 | 20 | 39 | 65 | 66 | 68 | 96 | 97 | 98 | |
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+------ ---
| | 9 | 21 | 40 |{43} | 67 | 69 | 99 | 100 | 101 | 247 |
+ 2 +-----+-----+-----+-----+-----+-----+-----+-----+-----+------ 7¨
| | 10 | 22 | 41 | 44 | 45 | 70 | 102 | 103 | 104 | |
q +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+------ ---
| | 11 | 23 | 42 | 46 | 47 |{71} | 105 | 106 | 107 | 139 |
+ 3 +-----+-----+-----+-----+-----+-----+-----+-----+-----+------ 11¨
| | 12 | 24 | 25 | 48 | 49 | 72 | 108 | 109 | 110 | |
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+------ ---
| | 13 | 26 | 27 | 50 | 51 | 73 | 74 | 111 | 112 | 286 |
+ 4 +-----+-----+-----+-----+-----+-----+-----+-----+-----+------ 13¨
| | 14 | 28 | 29 | 52 | 53 | 75 | 76 | 113 |{114}| |
r +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+------ ---
| | 15 | 30 | 31 | 54 | 55 | 77 | 78 | 79 | 80 | 157 |
+ 5 +-----+-----+-----+-----+-----+-----+-----+-----+-----+------ {17¨}
| | 16 | 32 | 33 | 56 | 57 | 81 | 82 | 83 | 84 | |
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+------ ---
| | 17 | 34 | 35 | 58 | 59 | 85 | 86 | 87 | 88 | 786 |
o + 6 +-----+-----+-----+-----+-----+-----+-----+-----+-----+------ 19¨
| | 18 | 36 | 37 | 60 | 61 | 89 | 90 | 91 | 92 | |
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+------ ---
∑ | 21 | 150 | | | | | | | | | 1729
|--------------------------------------------------- 16¨ ---|
|--------------------------------------- 15¨ ---|
|--------------------------- 14¨ ---|
|--------------- 13¨ ---|
|-- {12¨} --|
Kendalanya adalah kita tidak menemukan hubungan signifikan antara angka 2 dan 6. Berikutnya kita bahas bagaimana pola 114 angka ini dengan formasi prime hexagon.
Berikut ini adalah daftar bilangan² prima sampai nilai 1000 yang dimunculkan berdasarkan kaidah prime hexagon. Anda bisa lihat filenya di repository terkait.
- 619 = 114th prime
(5, 2, 1, 0)
(7, 3, 1, 0)
(11, 4, 1, 0)
(13, 5, 1, 0)
(17, 0, 1, 1)
(19, 1, 1, 1)
(23, 2, 1, 1)
(29, 2, -1, 1)
(31, 1, -1, 1)
(37, 1, 1, 1)
(41, 2, 1, 1)
(43, 3, 1, 1)
(47, 4, 1, 1)
(53, 4, -1, 1)
(59, 4, 1, 1)
(61, 5, 1, 1)
(67, 5, -1, 1)
(71, 4, -1, 1)
(73, 3, -1, 1)
(79, 3, 1, 1)
(83, 4, 1, 1)
(89, 4, -1, 1)
(97, 3, -1, 1)
(101, 2, -1, 1)
(103, 1, -1, 1)
(107, 0, -1, 1)
(109, 5, -1, 0)
(113, 4, -1, 0)
(127, 3, -1, 0)
(131, 2, -1, 0)
(137, 2, 1, 0)
(139, 3, 1, 0)
(149, 4, 1, 0)
(151, 5, 1, 0)
(157, 5, -1, 0)
(163, 5, 1, 0)
(167, 0, 1, 1)
(173, 0, -1, 1)
(179, 0, 1, 1)
(181, 1, 1, 1)
(191, 2, 1, 1)
(193, 3, 1, 1)
(197, 4, 1, 1)
(199, 5, 1, 1)
(211, 5, -1, 1)
(223, 5, 1, 1)
(227, 0, 1, 2)
(229, 1, 1, 2)
(233, 2, 1, 2)
(239, 2, -1, 2)
(241, 1, -1, 2)
(251, 0, -1, 2)
(257, 0, 1, 2)
(263, 0, -1, 2)
(269, 0, 1, 2)
(271, 1, 1, 2)
(277, 1, -1, 2)
(281, 0, -1, 2)
(283, 5, -1, 1)
(293, 4, -1, 1)
(307, 3, -1, 1)
(311, 2, -1, 1)
(313, 1, -1, 1)
(317, 0, -1, 1)
(331, 5, -1, 0)
(337, 5, 1, 0)
(347, 0, 1, 1)
(349, 1, 1, 1)
(353, 2, 1, 1)
(359, 2, -1, 1)
(367, 1, -1, 1)
(373, 1, 1, 1)
(379, 1, -1, 1)
(383, 0, -1, 1)
(389, 0, 1, 1)
(397, 1, 1, 1)
(401, 2, 1, 1)
(409, 3, 1, 1)
(419, 4, 1, 1)
(421, 5, 1, 1)
(431, 0, 1, 2)
(433, 1, 1, 2)
(439, 1, -1, 2)
(443, 0, -1, 2)
(449, 0, 1, 2)
(457, 1, 1, 2)
(461, 2, 1, 2)
(463, 3, 1, 2)
(467, 4, 1, 2)
(479, 4, -1, 2)
(487, 3, -1, 2)
(491, 2, -1, 2)
(499, 1, -1, 2)
(503, 0, -1, 2)
(509, 0, 1, 2)
(521, 0, -1, 2)
(523, 5, -1, 1)
(541, 5, 1, 1)
(547, 5, -1, 1)
(557, 4, -1, 1)
(563, 4, 1, 1)
(569, 4, -1, 1)
(571, 3, -1, 1)
(577, 3, 1, 1)
(587, 4, 1, 1)
(593, 4, -1, 1)
(599, 4, 1, 1)
(601, 5, 1, 1)
(607, 5, -1, 1)
(613, 5, 1, 1)
(617, 0, 1, 2)
(619, 1, 1, 2)
(631, 1, -1, 2)
(641, 0, -1, 2)
(643, 5, -1, 1)
(647, 4, -1, 1)
(653, 4, 1, 1)
(659, 4, -1, 1)
(661, 3, -1, 1)
(673, 3, 1, 1)
(677, 4, 1, 1)
(683, 4, -1, 1)
(691, 3, -1, 1)
(701, 2, -1, 1)
(709, 1, -1, 1)
(719, 0, -1, 1)
(727, 5, -1, 0)
(733, 5, 1, 0)
(739, 5, -1, 0)
(743, 4, -1, 0)
(751, 3, -1, 0)
(757, 3, 1, 0)
(761, 4, 1, 0)
(769, 5, 1, 0)
(773, 0, 1, 1)
(787, 1, 1, 1)
(797, 2, 1, 1)
(809, 2, -1, 1)
(811, 1, -1, 1)
(821, 0, -1, 1)
(823, 5, -1, 0)
(827, 4, -1, 0)
(829, 3, -1, 0)
(839, 2, -1, 0)
(853, 1, -1, 0)
(857, 0, -1, 0)
(859, 5, -1, -1)
(863, 4, -1, -1)
(877, 3, -1, -1)
(881, 2, -1, -1)
(883, 1, -1, -1)
(887, 0, -1, -1)
(907, 5, -1, -2)
(911, 4, -1, -2)
(919, 3, -1, -2)
(929, 2, -1, -2)
(937, 1, -1, -2)
(941, 0, -1, -2)
(947, 0, 1, -2)
(953, 0, -1, -2)
(967, 5, -1, -3)
(971, 4, -1, -3)
(977, 4, 1, -3)
(983, 4, -1, -3)
(991, 3, -1, -3)
(997, 3, 1, -3)
Bilangan mengisi segi enam dengan cara memutar sampai bilangan prima ini terpenuhi, kemudian melompat ke segi enam berikutnya yang istilahnya minor hexagon dan mulai berputar lagi.
- 12 + 24 + 36 = 36 + 36 = 2 x 6² = 72
Karenanya komposisi angka 6 prima ini baru muncul di 6 kali putaran minor hexagon ke angka 36. Anda bisa telusuri detilnya dengan kata kunci Prime Hexagon atau Minor Hexagon.
Berikut ini saya tabulasikan angka berdasarkan 3x6 dari 18 polarisasi angka dua (2) ke 19 putaran sehingga berujung 6x19 di angka 114. Angka² yang keluar lingkup 18 saya tandai warna merah.
True Prime Pairs:
(5,7), (11,13), (17,19)
layer| i | f
-----+-----+-----
| 1 | 5
1 +-----+
| 2 | 7
-----+-----+--- } 36
| 3 | 11
2 +-----+
| 4 | 13
-----+-----+------
| 5 | 17
3 +-----+ } 36
| {6} |{19}
-----+-----+-----
True Prime Pairs:
(5,7), (11,13), (17,19)
Description
===========
Getting result within a huge package (5 to 19) by spreading (11)
the untouched objects (7) and tunneling (13) them in to a definite scheme (17).
Compositions
============
| 1st (Form) | 2nd (Route) | 3rd (Channel) |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
1 | 19 | - | 31 | 37 | - | - | - | - | - | - | - | - | - | - | 103 | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
2 | 20 |{26}| - | 38 | - | - | - | - | - |{74}| - | - | - |{98}|{104}| - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
3 | 21 |{27}| - | 39 | - | - | - | - | - |{75}| - | - | - |{99}|{105}| - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
4 | 22 | 28 | - | 40 | - | - | - | - | - | 76 | - | - | - |100 | - | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
5 | 23 | 29 | - | 41 | - | - | - | - | - | 77 | - | - | - |101 | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
6 | 24 | - | - | 42 | - | 54 | - | - | 72 | 78 | - | 90 | 96 | - | - | - | - | 114|
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
7 | 25 | - | - | 43 | - | 55 | - | - | 73 | 79 | - | 91 | 97 | - | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
8 | - | - | - | 44 | - | 56 | - | - | - | 80 | - | 92 | - | - | - | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
9 | - | - | - | 45 | - | 57 | - | - | - | 81 | - | 93 | - | - | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
10 | - | - | - | 46 | 52 | 58 | - | 70 | - | 82 | 88 | 94 | - | - | - | - | 112| - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
11 | - | - | - | 47 | 53 | 59 | - | 71 | - | 83 | 89 | 95 | - | - | - | - | 113| - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
12 | - | - | - | 48 | - | 60 | 66 | - | - | 84 | - | - | - | - | - | 108 | - | - |
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
13 | - | - | - | 49 | - | 61 | 67 | - | - | 85 | - | - | - | - | - | 109 | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
14 | - | - |{32}|{50}| - | 62 |{68}| - | - |{86}| - | - | - | - | - |{110}| - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
15 | - | - |{33}|{51}| - | 63 |{69}| - | - |{87}| - | - | - | - | - |{111}| - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
16 | - | - | 34 | - | - | 64 | - | - | - | - | - | - | - | - | 106 | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
17 | - | - | 35 | - | - | 65 | - | - | - | - | - | - | - | - | 107 | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
18 | - | 30 | 36 | - | - | - | - | - | - | - | - | - | - |102 | - | - | - | - |
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
|---------------------------------------------------------------- 165 ----------------------|
|------------------------------ 136 --------------|
|------- 121 -------|
Seperti yang Anda lihat pada tabulasi di atas ini maka fenomena dari angka dasar 114 sekali lagi tampil dimana dia jatuh di angka enam (6) tepat pada putaran ujung yaitu yang ke-19.
Putaran awal angka enam (6) akan mewakili 12 repository via pasangan prima 5 dan 7 persis jumlah enam (6) angka True Prime Pairs sehingga menjadi tujuhpuluh dua (72) objek.
- 5x6 + 7x6 = 30 + 42 = 72
#1 |------ {5®} -------|------------ {7®} ------------|
------+---+---+---+---+---+---+---+---+---+----+----+----+
repo | 1 | 2 | 3 | 4 | 5 |{6}| 7 | 8 | 9 | 10 | 11 |{12}| ∑id = 73
------+---+---+---+---+---+---+---+---+---+----+----+----+
6 6 6 6 6 | 6 6 6 6 6 6 6
Karena objek pertama dialokasikan pada id: 1 maka ujung putaran ada pada angka tujuhpuluh tiga (73) yang jatuh di putaran ke-10 persis dengan akar digital dari angka ini.
Konsep utama dari projek ini adalah merepresentasikan 114 repository secara keseluruhan. Ini akan dimulai pasangan 11 dan 13 dari id: 74 yang paling awal ada diluar hexagon sentral.
- 37 = mirror 73
| 1st (Form) | 2nd (Route) | 3rd (Channel) |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
1 |{19}| - | 31 | 37 | - | - | - | - | - | - | - | - | - | - | 103 | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
2 | 20 | 26 | - | 38 | - | - | - | - | - |{74}| - | - | - | 98 | 104 | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
Hal ini dimungkinkan karena pengalokasian objek dari angka 30 ke 31 bersesuaian dengan angka sembilan belas (19) tepat berada di atas angka tujuhpuluh empat (74).
Secara prinsip, kita akan sampai seluruhnya ke konfigurasi angka² berupa pola 66 via 6 x 16 = 96 yang terbagi dalam 7 x 2 = 14 tahapan proses dari 5 objek ke π(619) = 114 berikut ini:
- 6 x 19 = 6 x (1 & 9) = 6 x (1 & (4,5)) = π(6 & (14+5)) = π(6 & 19) = π(619) = 114
Duplikasi dilakukan via kerangka 139 objek turunan dari tujuh (7) vs tiga (3) objek yang kita setel di angka tujuhpuluh tiga (73) dimana hasilnya adalah seperti berikut ini:
- layar-1 ada 6 angka, digandakan 6x ke 36 maka ada 6 - 1 atau 5 yang rangkap
- layar-2 ada 36 angka, digandakan 6x ke 216 maka ada 36 - 6 atau 30 yang rangkap
- layar-3 ada 72 angka, digandakan 6x ke 432 maka ada 72 - 36 - 6 atau 30 yang rangkap
Pada bagan ini id: 1 kita tempatkan sebagai kotak judul, 12 kotak masing² mewakili repository via 6 putaran minor hexagon 72 x id: 2 sd 73 yang diintegrasikan via tujuh (7) alur di atas.
Berikut ilustrasi Skema in-out yang diterapkan pada Bagan Sequence dimana 156 ke 165 adalah titik sentral palindrom terhadap enam (6) alur 1 ke 155 dan berlaku sebagai alur ke tujuh (7).
- 6 & 7 = 67 = 19th prime
Anda bisa analogikan ini sebagai pola pada inti atom terkecil. Dimana pola yang sama ada pada titik sentral galaxy dari alam semesta yang kita huni yang disebut dengan istilah Black Hole.
Proses in dan out akan ditrigger oleh angka 2 dan 5 ke 10 dimana palindrom 3,6,9 menempatkan angka enam (6) berada di posisi ke empat (4) sampai terbentuknya unit baru dari 9 ke 19.
- 4 + 6 = 10 = d(73)
|---- {4®} -----|---------- {6®} ----------|
#2 | - | 0 | 1 2 3 {4}| 5 6 7 8 9 10 |
------+---|---+---+---+---+---+---+---+---+----+----+----+
repo | 1 | 2 | 3 | 4 | 5 |{6}| 7 | 8 | 9 | 10 | 11 | 12 | ∑id = 73 - 75 (3x)
------+---|---+---+---+---+---+---+---+---+----+----+----+
{7}
Proses di angka tujuhpuluh empat (74) kemudian mengaktifkan angka dua (2) hingga menggeser angka 10 ke 11 otomatis angka enam (6) sekarang menempati posisi ke lima (5).
- 4 + 7 = 11 = d(74)
|---- {4®} -----|------------ {7®} ------------|
#2 | - | 1 2 3 4 | 5 6 7 8 9 10 {11}|
------+---|---+---+---+---+---+---+---+---+----+----+----+
repo | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ∑id = 76 - 78 (3x)
------+---|---+---+---+---+---+---+---+---+----+----+----+
1 1 1
#2 | - | 1 2 3 4 | 5 6 7 8 9 10 {11}|
------+---|---+---+---+---+---+---+---+---+----+----+----+
repo | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ∑id = 79 - 83 (5x)
------+---|---+---+---+---+---+---+---+---+----+----+----+
1 1 1
#2 | - | 1 2 3 4 | 5 6 7 8 9 10 {11}|
------+---|---+---+---+---+---+---+---+---+----+----+----+
repo | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ∑id = 84 - 85 (2x)
------+---|---+---+---+---+---+---+---+---+----+----+----+
1 1 1 1 1
Pola pada putaran berikutnya adalah sama yaitu 1 ke 7, 13 dan 19 mewakili (2,3,5) totalnya 19 x 6 atau 114 putaran. Pola berikutnya mulai di selisih prima ke-1 sd -5 atau 2 ke 11 yaitu 9.
Dengan demikian total penggandaan dikurang yang rangkap akan kembali tersusun bilangan yang unik dimana skema dan formasinya persis balik lagi ke awal yaitu 114 tadi.
Setelah proses dari pasangan pertama True Prime Pairs yaitu 5 dan 7 kita masuk ke pasangan kedua 11 dan 13. Perhatikan jika polarisasi di kolom 11 berisi 10 x id yaitu dari 76 sd 85.
3x 3x 5x
+-----+-----+-----+
| 11‘ | 12‘ | 13‘ | {3¤} ∑id = 86 - 88
+-----+-----+-----+
1 1 1
Konsep yang dilakukan adalah diatas 74 ada 19 yang sudah berupa unit. Kemudian angka 75 akan memilih sub 7 dan 5 yang jumlah id nya 12 dan 13 dan digabung di 10 ke 11 format (3x,3x,5x).
|---- {4®} -----|------------ {7®} ------------|
#2 | - | 1 2 3 4 | 5 6 7 8 9 10 11 |
------+---|---+---+---+---+---+---+---+---+----+----+----+
repo | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ∑id = 73 - 75 (3x)
------+---|---+---+---+---+---+---+---+---+----+----+----+ Δ
{7} 1 1 1 |
|
#2 | - | 1 2 3 4 | 5 6 7 8 9 10 {11} | |
------+---|---+---+---+---+---+---+---+---+----+----+----+ |
repo | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ∑id = 76 - 78 (3x)
------+---|---+---+---+---+---+---+---+---+----+----+----+ |
1 1 1 |
|
#2 | - | 1 2 3 4 | 5 6 7 8 9 10 {11}| |
------+---|---+---+---+---+---+---+---+---+----+----+----+ |
repo | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ∑id = 79 - 83 (5x)
------+---|---+---+---+---+---+---+---+---+----+----+----+ |
1 1 1 1 1 |
|
----------------------------------------------------------------------
| | |
3x 3x 5x
+-----+-----+-----+
| 11‘ | 12‘ | 13‘ | {3¤} ∑id = 86 - 88
+-----+-----+-----+
1 1 1
Δ Δ Δ
| | |
------------------------------------------------
| | |
---------------------- |
| | |
---- 13' 12' 10' + 1' = 11'
Δ Δ Δ
| 1st (Form) | 2nd (Route) | 3rd (Channel) |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
1 | 19 | - | 31 | 37 | - | - | - | - | - | - | - | - | - | - | 103 | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
2 | 20 |{26}| - | 38 | - | - | - | - | - |{74}| - | - | - |{98}|{104}| - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
3 | 21 |{27}| - | 39 | - | - | - | - | - |{75}| - | - | - |{99}|{105}| - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
4 | 22 | 28 | - | 40 | - | - | - | - | - | 76 | - | - | - |100 | - | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
5 | 23 | 29 | - | 41 | - | - | - | - | - | 77 | - | - | - |101 | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
6 | 24 | - | - | 42 | - | 54 | - | - | 72 | 78 | - | 90 | 96 | - | - | - | - | 114|
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
7 | 25 | - | - | 43 | - | 55 | - | - | 73 | 79 | - | 91 | 97 | - | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
8 | - | - | - | 44 | - | 56 | - | - | - | 80 | - | 92 | - | - | - | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
9 | - | - | - | 45 | - | 57 | - | - | - | 81 | - | 93 | - | - | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
10 | - | - | - | 46 | 52 | 58 | - | 70 | - | 82 | 88 | 94 | - | - | - | - | 112| - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
11 | - | - | - | 47 | 53 | 59 | - | 71 | - | 83 | 89 | 95 | - | - | - | - | 113| - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
12 | - | - | - | 48 | - | 60 | 66 | - | - | 84 | - | - | - | - | - | 108 | - | - |
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
13 | - | - | - | 49 | - | 61 | 67 | - | - | 85 | - | - | - | - | - | 109 | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
14 | - | - |{32}|{50}| - | 62 |{68}| - | - |{86}| - | - | - | - | - |{110}| - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
15 | - | - |{33}|{51}| - | 63 |{69}| - | - |{87}| - | - | - | - | - |{111}| - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
16 | - | - | 34 | - | - | 64 | - | - | - | - | - | - | - | - | 106 | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
17 | - | - | 35 | - | - | 65 | - | - | - | - | - | - | - | - | 107 | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
18 | - | 30 | 36 | - | - | - | - | - | - | - | - | - | - |102 | - | - | - | - |
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
1 | 2 | 3 | 4 | {5}| 6 | {7}| 8 | 9 | 10 |{11}| 12 | 13 | 14 | 15 | 16 | 17 | 18 |{19}|
| |
- id 75 -
Anda bisa lihat bahwa disini angka tujuhpuluh empat (74) ambil input ini dari sembilan belas (19) sedangkan tujuhpuluh lima (75) memilah data dari angka tujuhpuluh tiga (73).
Angka lain akan melakukan proses lain lagi. Jadi tiap angka akan berfungsi sesuai propertinya masing². Untuk detilnya kita bahas terpisah pada halaman angka² terkait.
1 1
+-----+-----+
| 9‘ | 10‘ | {2¤} ∑id = 89 - 90
+-----+-----+-----+
| 11‘ | 12‘ | 13‘ | 3¤
+-----+-----+-----+
#2 | - | 1 2 3 4 | 5 6 7 8 9 10 {11}|
------+---|---+---+---+---+---+---+---+---+----+----+----+
repo | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ∑id = 84 - 85 (2x)
------+---|---+---+---+---+---+---+---+---+----+----+----+
1 1
+-----+-----+
| 9‘ | 10‘ | {2¤} ∑id = 89 - 90
+-----+-----+-----+
| 11‘ | 12‘ | 13‘ | 3¤
+-----+-----+-----+
+-----+-----+
| 9 | 10 | 2¤
+-----+-----+-----+
| 11 | 12 | 13 | 3¤
+-----+-----+-----+-----+
| 14 | 15 | 16 | 17 | {4¤} ∑id= 91 - 94
+-----+-----+-----+-----+
1 1 1 1
1 1 1 1
+-----+-----+-----+-----+
| 5 | 6 | 7 | 8 | {4¤} ∑id = 95 - 98
+-----+-----+-----+-----+
| 9 | 10 | 2¤
+-----+-----+-----+
|{11} | 12 | 13 | {3¤}
+-----+-----+-----+-----+
| 14 | 15 | 16 | 17 | 4¤
+-----+-----+-----+-----+
+-----+-----+-----+-----+
| 5 | 6 | 7 | 8 | {4¤}
+-----+-----+-----+-----+
| 9 | 10 | 2¤
+-----+-----+-----+
|{11} | 12 | 13 | 3¤
+-----+-----+-----+-----+
| 14 | 15 | 16 | 17 | {4¤}
+-----+-----+-----+-----+
| 18 | 19 | 20 | {3¤} ∑id = 99 - 101
+-----+-----+-----+
1 1 1
1 1 1 1
+-----+-----+-----+-----+
| 1 | 2 | 3 | 4 | 4¤ ∑id={102} - 105
+-----+-----+-----+-----+
| 5 | 6 | 7 | 8 | 4¤
+-----+-----+-----+-----+
| 9 | 10 | {2¤} (M dan F)
+-----+-----+-----+
|{11} | 12 | 13 | 3¤
+-----+-----+-----+-----+
| 14 | 15 | 16 | 17 | 4¤
+-----+-----+-----+-----+
| 18 | 19 | 20 | 3¤
+-----+-----+-----+
+-----+-----+-----+-----+
| 1 | 2 | 3 | 4 | 4¤
+-----+-----+-----+-----+
| 5 | 6 | 7 | 8 | 4¤
+-----+-----+-----+-----+
| 9 | 10 | {2¤} (M dan F)
+-----+-----+-----+
|{11} | 12 | 13 | {3¤}
+-----+-----+-----+-----+
| 14 | 15 | 16 | 17 | {4¤}
+-----+-----+-----+-----+
| 18 | 19 | 20 | 3¤
+-----+-----+-----+-----+-----+-----+-----+-----+-----+
| 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 |{29} | 9¤ ∑id = 106 - {114}
+-----+-----+-----+-----+-----+-----+-----+-----+-----+
1 1 1 1 1 1 1 1 1
Dari konfigurasi yang diuraikan di atas Anda bisa lihat jika pada prosesnya kita hanya bergantung pada komposisi angka² yang dibentuk oleh prime hexagon.
True Prime Pairs:
(5,7), (11,13), (17,19)
|------------ 6¤ -------------|------------- 6¤ ------------|
+----+----+----+----+----+----+----+----+----+----+----+----+
| 5 | 7 | 11 | 13 | 17 |{19}| 17 | 12 | 11 | 19 | 18 |{43}|
+----+----+----+----+----+----+----+----+----+----+----+----+
True Prime Pairs:
(5,7), (11,13), (17,19)
|---------- 5¤ ----------|--------------- 7¤ ---------------|
+----+----+----+----+----+----+----+----+----+----+----+----+
| 5 | {7}| 11 |{13}| 17 | 19 | 17 | 12 | 11 | 19 | 18 | 43 | ∑id = {121}
+----+----+----+----+----+----+----+----+----+----+----+----+
| 1 1 1 1 1 1 1 |
102
Δ
-----+-----+-----+-----+-----+
19¨ | 1 | 2 | 3 | 4 | 4¤
-----+-----+-----+-----+-----+
17¨ | 5 | 6 | 7 | 8 | 4¤
+-----+-----+-----+-----+
12¨ | 9 | 10 | 2¤
+-----+-----+-----+
11¨ | 11 | 12 | 13 | 3¤
-----+-----+-----+-----+-----+
19¨ | 14 | 15 | 16 | 17 | 4¤
+-----+-----+-----+-----+
18¨ | 18 | 19 | 20 | 3¤
+-----+-----+-----+-----+-----+-----+-----+-----+-----+
43¨ | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 9¤
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
102
Δ
-----+-----+-----+-----+-----+ ---
19¨ | 3¨ | 4¨ | 6¨ | 6¨ | 4¤ |
-----+-----+-----+-----+-----+ |
17¨ | 5¨ | 3¨ | 2¨ | 7¨ | 4¤ |
+-----+-----+-----+-----+ |
12¨ | 6¨ | 6¨ | 2¤ (M dan F) |
+-----+-----+-----+ 17¤
11¨ | 3¨ | 3¨ | 5¨ | 3¤ |
-----+-----+-----+-----+-----+ |
19¨ | 4¨ | 4¨ | 5¨ | 6¨ | 4¤ |
+-----+-----+-----+-----+ ---
{18¨}| 5¨ | 5¨ | 8¨ | 3¤ |
+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 12¤
43¨ | 3¨ | 5¨ | 5¨ | 5¨ | 3¨ | 7¨ | 5¨ | 3¨ | 7¨ | 9¤ (C1 dan C2) |
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ ---
139¨ |----- {13¨} -----|------ 15¨ ------|------ 15¨ ------|
| 1 2 3 | 4 5 6 | 7 8 9 |
Δ Δ Δ
- 73 » 7 x 3 = 21 = d(3)
| 1st (Form) | 2nd (Route) | 3rd (Channel) |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
1 |{19}| - | 31 | 37 | - | - | - | - | - | - | - | - | - | - | 103 | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
2 |{20}| 26 | - | 38 | - | - | - | - | - | 74 | - | - | - | 98 | 104 | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
3 |{21}| 27 | - | 39 | - | - | - | - | - | 75 | - | - | - | 99 | 105 | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
4 |{22}| 28 | - | 40 | - | - | - | - | - | 76 | - | - | - |100 | - | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
5 |{23}| 29 | - | 41 | - | - | - | - | - | 77 | - | - | - |101 | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
6 |{24}| - | - | 42 | - | 54 | - | - | 72 | 78 | - | 90 | 96 | - | - | - | - | 114|
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
{7} |{25}| - | - | 43 | - | 55 | - | - |{73}| 79 | - | 91 | 97 | - | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
8 | - | - | - | 44 | - | 56 | - | - | - | 80 | - | 92 | - | - | - | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
9 | - | - | - | 45 | - | 57 | - | - | - | 81 | - | 93 | - | - | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
10 | - | - | - | 46 | 52 | 58 | - | 70 | - | 82 | 88 | 94 | - | - | - | - | 112| - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
11 | - | - | - | 47 | 53 | 59 | - | 71 | - | 83 | 89 | 95 | - | - | - | - | 113| - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
12 | - | - | - | 48 | - | 60 | 66 | - | - | 84 | - | - | - | - | - | 108 | - | - |
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
13 | - | - | - | 49 | - | 61 | 67 | - | - | 85 | - | - | - | - | - | 109 | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
14 | - | - | 32 | 50 | - | 62 | 68 | - | - | 86 | - | - | - | - | - | 110 | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
15 | - | - | 33 | 51 | - | 63 | 69 | - | - | 87 | - | - | - | - | - | 111 | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
16 | - | - | 34 | - | - | 64 | - | - | - | - | - | - | - | - | 106 | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
17 | - | - | 35 | - | - | 65 | - | - | - | - | - | - | - | - | 107 | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
18 | - | 30 | 36 | - | - | - | - | - | - | - | - | - | - |102 | - | - | - | - |
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
{1} | {2}| 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
|--------------------------------------------------------- 19¨ -----------------------------|
|--------------------------------------- 13¨ ---------------|
|------------- 7¨ ------------|
|-------- 5¨ -------|
|-- 121 --|
Skema ini akan saya aplikasikan kedalam struktur pemrograman. Pada halaman Pratinjau sudah dijelaskan tentang Skema 13:9. Nah komposisi ini yang kita akan gunakan.
Scheme 13:9
===========
(1){1}-7: 7’
(1){8}-13: 6‘
(1)14-{19}: 6‘
------------- 6+6 -----
(2)20-24: 5’ |
(2)25-{29}: 5’ |
------------ 5+5 -----
(3)30-36: 7:70,30,10²|
------------ |
(4)37-48: 12• --- |
(5)49-59: 11° | |
--}30° 30• |
(6)60-78: 19° | |
(7)79-96: 18• --- |
-------------- |
(8)97-109: 13 |
(9)110-139:{30}=5x6 <--x-- (129/17-139/27)
--
{43}
- (43 + 157) / 2 = 100
i | n | i&n | 114i | Δ1 | α | β | Δ2
----+----+------+------+-----+------+-----+-----
1 | 5 | 15 | 114 | 99 | 114 | 103 | {11}
----+----+------+------+-----+------+-----+-----
2 | 7 | 27 | 228 | 201 | 286 | 200 | 86
----+----+------+------+-----+------+-----+-----
3 | 11 | 311 | 342 | 31 | 139 | 41 | 98
----+----+------+------+-----+------+-----+-----
4 | 13 | 413 | 456 | 43 | 247 | 200 | 47
----+----+------+------+-----+------+-----+-----
5 | 17 | 517 | 570 | 53 | 157 | 50 | 107
----+----+------+------+-----+------+-----+-----
6 | 19 | 619 | 684 | 65 | 786 | 192 | 594
----+----+------+------+-----+------+-----+-----
∑ | 72 | 1902 | 2394 | 492 | 1729 | 786 | 943
Formasi (70,30,100) ini mengandung filosofi tiga (3) layar dari Skema 111+3 dimana sistem angka bergerak dari polarisasi 43 dan 71 menuju 29 dan 30 hingga memetakan angka 200 ke 786.
- 70 + 30 + 100 = 200
Berikut ini yang saya maksud dengan Skema 111+3. Diproses via prima kembar 11 dan 13 dimana output di angka 17 dan 29 merupakan formasi dasar dari projek ini yaitu Formasi-1729.
- 10x10 + 7+7 = 114 = 111+3 = Φ(11,13)
#5 | ® |------- 5® --------|----------- 6® -----------|
------+---+---+---+---+---+---+---+---+---+----+----+----+
repo | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |{1,77}
------+---+---+---+---+---+---+---+---+---+----+----+----+----
blok | 7 | 9 |{7}| 9 | 6 | 7 | 8 | 8 | 5 | 8 | 8 | 3 | 78
------+---+---+---+---+---+---+---+---+---+----+----+----+
Δ Δ Δ
Φ17 Φ29. 111 object
Pada proses awalnya ini diinisiasi oleh angka 2 dan 5 ke 10 dan 11 yang ujungnya memberikan keluaran basis DNA dalam format (70,30,100) tadi. Detilnya diulas di angka sepuluh (10)
|-®-|--- 3® ----|--- 3® ----|-------- 5® ----------|
#1 |10¨|--- 11¨ ---|--- 12¨ ---|-------- 13¨ ---------|
|10 |(1+1)x10=20|(1+2)x10=30|---- (1+3)x10=40 -----|
------+---|---+---+---+---+---+---+---+---+----+----+----+
repo | 1 |{2}| 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | (1,77) = 12®
------+---|---+---+---+---+---+---+---+---+----+----+----+----
user | 7 | - | - | - | - | 7 | 8 | - | - | 8 | 8 | 3 | (1,2,3) = 6®
------+---|---+---+---+---+---+---+---+---+----+----+----+
main | - |{9}| 7 | 9 | 6 | - | - | 8 | 5 | - | - | - | (4,2)= 6®
------+---|---+---+---|---+---+---|---+---+----+----+----+
| Δ Δ | | Δ |--Φ28--|---------- Φ82 -------|
|Φ11 Φ10| |Φ11|------------ Φ110 ------------|
| Φ21 | |-------------- Φ121 --------------|
Pola 111+3 ini dicompile jadi satu (1) unit format (1,3,9) via tiga (3) angka (13,17,29) diawali pola (1,2,3) dan (4,2) ke 43 objek 13 membentuk 2x11x13 mewakili 286 objek mulai angka dua (2).
- 109 + 30 + 29 = 139 + 29 = 168 = π(1000)
#8 |--------- 6® ----------|---------- 6® ------------|
| 1 |-------------- 77 = 4² + 5² + 6² -------------|
------+---|---+---+---+---+---+---+---+---+----+----+----+
repo |{1}|{2}| 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |{12}| (1,77)
------+---|---+---+---+---+---+---+---+---+----+----+----+
user | 7 | - | - | - | - | 7 | 8 | - | - | 8 | 8 | 3 | form (1,2,3)
------+---|---+---+---+---+---+---+---+---+----+----+----+
main | - | 9 | 7 | 9 | 6 | - | - | 8 | 5 | - | - | - | form (4,2)
------+---|---+---+---+---+---+---+---+---+----+----+----+
Δ | Δ | Δ | Δ
Φ17|Φ29 | 96-99| 100 - 123 ({24})
|--- A,T,G,C ---| | └── 100 - 103 (4x) » 100
Δ 2x2 = 4x |------- 2x3 = 6x -------| └── 104 - 109 (6x) » 30
{98} | └── 110 - 123 (14x)» 70
Karena formasi 111+3 ini mulai dari angka 2, totalnya repdigit, tepat di angka 7 yaitu 11x7 atau 77. Dengan demikian skema 111 objek pada angka 12 akan menjadi basis ke 114 angka dasar.
- 57 + 81 = 139
id: 57
---+-----+-----
1 | 1 |{15} Δ14 --------------» {79} = 22th prime
---+-----+-----
2 | 16 | 17 Δ1 ---------------» 80
---+-----+----- } Δ3
{3}|{18} | 20 Δ2 ---------------» 81 > β(81) = β(57) = {4}
---+-----+----- } Δ 10
4 | 21 | 24 Δ3 ---------------» 82
---+-----+----- } Δ7
5 | 25 |{29} Δ4 ---------------» {83} = 23th prime
---+-----+-----
15 |
| 1st (Form) | 2nd (Route) | 3rd (Channel) |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
1 | 19 | - | 31 | 37 | - | - | - | - | - | - | - | - | - | - | 103 | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
2 | 20 |{26}| - | 38 | - | - | - | - | - |{74}| - | - | - |{98}|{104}| - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
3 | 21 |{27}| - | 39 | - | - | - | - | - |{75}| - | - | - |{99}|{105}| - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
4 | 22 | 28 | - | 40 | - | - | - | - | - | 76 | - | - | - |100 | - | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
5 | 23 | 29 | - | 41 | - | - | - | - | - | 77 | - | - | - |101 | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
6 | 24 | - | - | 42 | - | 54 | - | - | 72 | 78 | - | 90 | 96 | - | - | - | - | 114|
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
7 | 25 | - | - | 43 | - | 55 | - | - | 73 | 79 | - | 91 | 97 | - | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
8 | - | - | - | 44 | - | 56 | - | - | - | 80 | - | 92 | - | - | - | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
9 | - | - | - | 45 | - | 57 | - | - | - | 81 | - | 93 | - | - | - | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
10 | - | - | - | 46 | 52 | 58 | - | 70 | - | 82 | 88 | 94 | - | - | - | - | 112| - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
11 | - | - | - | 47 | 53 | 59 | - | 71 | - | 83 | 89 | 95 | - | - | - | - | 113| - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
12 | - | - | - | 48 | - | 60 | 66 | - | - | 84 | - | - | - | - | - | 108 | - | - |
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
13 | - | - | - | 49 | - | 61 | 67 | - | - | 85 | - | - | - | - | - | 109 | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
14 | - | - | - |{50}| - | 62 |{68}| - | - |{86}| - | - | - | - | - |{110}| - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
15 | - | - | - |{51}| - | 63 |{69}| - | - |{87}| - | - | - | - | - |{111}| - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
16 | - | - | 34 | - | - | 64 | - | - | - | - | - | - | - | - | 106 | - | - | - |
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
17 | - | - | 35 | - | - | 65 | - | - | - | - | - | - | - | - | 107 | - | - | - |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----+-----+----+----+
18 | - | 30 | 36 | - | - | - | - | - | - | - | - | - | - |102 | - | - | - | - |
=====+====+====+====+====+====+====+====+====+====+====+====+====+====+====+=====+=====+====+====+
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
|--------------------------------------------------------- 19¨ -----------------------------|
|--------------------------------------- 13¨ ---------------|
|------------- 7¨ ------------|
|-------- 5¨ -------|
|--- 2¨ --|
Berikutnya saya uraikan cara merealisasikan koneksi ini.
Seperti yang sudah dijelaskan sebelumnya proses angka 2 dan 6 ini dilakukan via skema expansi dari angka dua (2) terhadap angka prima ke-2 yaitu angka tiga (3) ke angka delapan (8).
- 13 + 8² = 13 + 64 = 77
Twin Primes:
(5,7), (11,13), (17,19)
layer| i | f
-----+-----+------
| 1 | 5
1 +-----+
| 2 | 7
-----+-----+------
| 3 | 11
2 +-----+
| 4 | 13
-----+-----+------
| 5 | 17
3 +-----+
| {6} | 19
-----+-----+------
Sekarang bayangkan ada delapan (8) ekor hewan ternak yaitu domba, kambing, sapi dan unta. Kemudian tiap betina melahirkan anak dua (2) pasang jantan dan betina.
Nah bagaimana perbandingannya dengan berjalannya waktu?
Apakah masih akan sama? Tentu tidak kan.
Bagaimana menghitungnya?
Tentunya kelahirannya yang tidak dalam satu waktu. Kita asumsikan sudah lahir semua maka masing² hewan ternak ada sepasang jantan betina dengan 4 anak total enam (6) ekor.
- Dikandung oleh angka lima (5) ke angka (7)
ini adalah proses pasangan prima pertama.Can you rearrange these digits and achieve two dozen primes?Twin Primes: (5,7), (11,13), (17,19) layer| i | f -----+-----+------ | 1 | 5 1 +-----+ | 2 | 7 -----+-----+------ | 3 | 11 2 +-----+ | 4 | 13 -----+-----+------ | 5 | 17 3 +-----+ | {6} | 19 -----+-----+------
- sebelas ke tigabelas (13) kita analogikan dengan hewan ternak kambing
- Berikutnya kita lakukan lagi proses pertama menjadi 17 ini analogi hewan ternak sapi
- tujuhbelas ke sembilan belas (19) sebagai hewan ternak unta.
Yang khusus disini adalah bahwasanya ada dua angka dominan yaitu dua (2) dan enam (6) sedangkan prosesnya adalah dari 2 ke 5 berlanjut hingga berujung di angka 25 ke 66.
Dengan demikian bisa kita tarik kesimpulan bahwa skema True Prime Pairs dari formasi (7,13,19) dikemas kedalam formasi angka duapuluh lima (25) dan enampuluh enam (66).
Hal ini tak lain adalah peran mereka dalam skema bilangan² prima kembar dimana kedua angka ini terhubung via 25+1 dan (6,6) ke 66 ke angka duapuluh enam (26).
- The number obtained by concatenating the first prime and twice the next prime.
- The prime factorization of 26 uses the first three counting numbers.
- One of only two numbers which contain exactly the first three digits in its unique prime factorization.
- The number of minimal primes which cover the set of primes in base 10.
- 26 is the smallest number that can be expressed by three identical prime digits in a prime base, i.e., 222 in base three. Note that it is also the reverse of the second such number: 62 = 222 in base 5.
- 26 = 2 * prime(6).
- There are no twin primes between 26² and 28².
- The only number n < 1000 such that 10^n plus or minus 123456789 are both primes.
- The largest of three successive numbers n, n-1, n-2 such that the product of each of them with its reversal plus 1 is prime, i.e., 26*62+1=1613, 25*52+1=1301, 24*42+1=1009.
- The number of primes that end in 3 among the first 100 primes. A greater number than endings 1, 7, or 9.
Maka berdasarkan selisih angka 25 ke 29 kita ambil susunan dari 25 repository dengan empat (4) sisanya yaitu 26 ke 29 dimana kita akan dapatkan susunan vektor (6,12,18) dari True Prime Pairs.
Susunan vektor 25 dan 66 ini mengantar 2 ke 5 kemudian enam (6) membawa mereka dua (2) kali ke (11,13) dan (17,19) sehingga komposisi (70,30,100) berujung di 71 dan 68 ke Skema-139.
- 71 + 68 = 139
True Prime Pairs:
(5,7), (11,13), (17,19)
layer| i | f
-----+-----+---------
| 1 | 5
1 +-----+
| 2 | {7}
-----+-----+--- } 36
| 3 | 11
{2} +-----+
| 4 | {13}
-----+-----+---------
| 5 | 17
3 +-----+ } 36
| 6 | {19}
-----+-----+---------
Scheme 13:9
===========
(1){1}-7: 7’
(1){8}-13: 6‘
(1)14-{19}: 6‘
------------- 6+6 -------
(2)20-24: 5’ |
(2)25-{29}: 5’ |
------------ 5+5 -------
(3)30-36: 7:{70,30,10²}|
------------ |
(4)37-48: 12• --- |
(5)49-59: 11° | |
--}30° 30• |
(6)60-78: 19° | |
(7)79-96: 18• --- |
-------------- |
(8)97-109: 13 |
(9)110-139:{30}=5x6 <--x-- (129/17-139/27)
--
{43}
True Prime Vektors ζ(s):
(2,3), (29,89), (36,68), (72,42), (100,50), (2,3), (29,89), ...infinity
----------------------+-----+-----+-----+ ---
7 --------- 1,2:1| 1 | 30 | 40 | 71 (2,3) ‹-------------@---- |
| +-----+-----+-----+-----+ | |
| 8 ‹------ 3:2| 1 | 30 | 40 | 90 | 161 (7) ‹--- | 5¨
| | +-----+-----+-----+-----+ | | |
| | 6 ‹-- 4,6:3| 1 | 30 | 200 | 231 (10,11,12) ‹--|--- | |
| | | +-----+-----+-----+-----+ | | | ---
--|--|-----» 7:4| 1 | 30 | 40 | 200 | 271 (13) --› | {5®} | |
| | +-----+-----+-----+-----+ | | |
--|---› 8,9:5| 1 | 30 | 200 | 231 (14,15) ---------› | 7¨
289 | +-----+-----+-----+-----+-----+ | |
| ----› 10:6| 20 | 5 | 10 | 70 | 90 | 195 (19) --› Φ | {6®} |
--------------------+-----+-----+-----+-----+-----+ | ---
67 --------› 11:7| 5 | 9 | 14 (20) --------› ¤ | |
| +-----+-----+-----+ | |
| 78 ‹----- 12:8| 9 | 60 | 40 | 109 (26) «------------ | 11¨
| | +-----+-----+-----+ | | |
| | 86‹--- 13:9| 9 | 60 | 69 (27) «--- Δ (Rep Fork) | {2®} | |
| | | +-----+-----+-----+ | | ---
| | ---› 14:10| 9 | 60 | 40 | 109 (28) ------------- | |
| | +-----+-----+-----+ | |
| ---› 15,18:11| 1 | 30 | 40 | 71 (29,30,31,32) ---------- 13¨
329 | +-----+-----+-----+ |
| ‹--------- 19:12| 10 | 60 | {70} (36) ‹--------------------- Φ |
-------------------+-----+-----+ ---
786 ‹------- 20:13| 90 | 90 (38) ‹-------------- ¤ |
| +-----+-----+ |
| 618 ‹- 21,22:14| 8 | 40 | 48 (40,41) ‹---------------------- 17¨
| | +-----+-----+-----+-----+-----+ | |
| | 594 ‹- 23:15| 8 | 40 | 70 | 60 | 100 | 278 (42) «-- |{6'®} |
| | | +-----+-----+-----+-----+-----+ | | ---
--|--|-»24,27:16| 8 | 40 | 48 (43,44,45,46) ------------|---- |
| | +-----+-----+ | |
--|---› 28:17| 100 | {100} (50) ------------------------» 19¨
168 | +-----+ |
| 102 -› 29:18| 50 | 50(68) ---------> Δ |
----------------------+-----+
Disini Anda bisa lihat jika angka enam (6) hanya mengalah sekali di awal yaitu pada sesi 2 ke 5 ke tujuh (7). Selanjutnya dia mendominasi sampai 100 ke 50 balik ke awal di angka dua (2).
Sebenarnya enam (6) menyimpan angka berulang 1, 4, 2, 8, 5 dan 7. Anda bagi angka berapapun dengan tujuh (7) maka maka Anda akan jumpai keenam angka yang berulang ini.
1/7 = 0,142857142857142857142857.. infinity
Berdasarkan pemilahan objek secara homogen terhadap 114 repository ini kita akan dapatkan angka 57 yang terdisribusi atas pasangan angka (28,29) seperti berikut ini:
- (114/2)! = 57! = 1653 » 1653 / 57 = 29
--------+
| ⅓
+--- } ⅔
Case A | ⅓
+---------
| ⅓ |
-----------------+ Φ = ⅔
| ⅓ |
+---------
Case B | ⅓
+--- } ⅔
| ⅓
---------
Ujung angka ini ada di 2, 8 dan 5, 7, kita gabung jadi 28 dan 57 yang selisihnya adalah 29. Itulah mengapa semua proses di Sistem DNA itu mau ke kiri, ke kanan, ke atas, ke bawah, ke luar, ke dalam, whatever, semuanya akan terjadi pengulangan di angka duapuluh sembilan (29) ini.
- 9 + 19 + 29 = 28 + 29 = 57
P7:(142857)
# | A | B | ∑
------+------+------+-----
{1} | | |
------+ | |
... | 28 | 29 | 57
------+ | |
{57} | | |
------+------+------+-----
58 | | |
------+ | |
... | 29 | 28 | 57
------+ | |
114 | | |
------+------+------+-----
| 57 | 57 | 114
Dan ini juga sebabnya kenapa DNA itu bentuknya torus berpilin dan muter² dalam lingkup tiga (3) arah secara tiga (3) dimensi (3x3=9) yang secara keseluruhannya menyerupai bentuk trifoil..
Akar digital dari angka duapuluhdelapan (28) adalah angka satu (1). Jadi hampir mirip dengan angka batas sembilanbelas (19).
Twenty-eight is the only known number which can be expressed as a sum of the first non negative integers (1 + 2 + 3 + 4 + 5 + 6 + 7), a sum of the first primes (2 + 3 + 5 + 7 + 11) and a sum of the first non primes (1 + 4 + 6 + 8 + 9) and there is probably no other number with this property.
Angka duapuluh delapan (28) berperan pada konfigurasi (6®,6®) di angka 111+11+1=123 dimana 111 dan 123 merupakan objek dari angka sebelas (11) dan duabelas (12).
11=12+112+1112 = 1+2+8 and the only known values of n for which (p(n)^p(n)-1)/(p(n)-1) is prime are n=1,2,8, and 11.
Disini korelasi dari formasi-285 dan formasi-114 dengan angka empat (4) dan tujuh (7) sebagai faktor angka duapuluhdelapan (28).
Formasi ini kita urut berdasarkan jumlah faktor. Misal angka pertama yaitu 71 adalah 3 faktor, yg kedua yaitu 161 adalah 4 faktor dst maka kita akan dapatkan 14 kelompok berikut ini:
- Φ(11,13) = (114 - 10²) + 13 = 27
1729 = 7 x 13 x 19
1729 / 7 = 13 x 19 = 247
1729 = 7 x 13 x 19
7 + 13 = 20 = d(2)
└── 2 x 19 = 38
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
| {1}| 2 | 3 | 4 | 5 | {6}| {7}| 8 | 9 | 10 | 11 | 12 | 13 | 14 |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
| {3}| {4}| 3 | 4 | 5 | 2 | 3 | 2 | 2 | 1 | 2 | 5 | 1 | 1 |{38}
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+---- } 285
| 3 | 8 | 9 | 16 | 25 |{12}|{21}| 16 | 18 | 10 | 22 | 60 |{13}|{14}|{247}
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
|-- 38 ---| |-- 33 ---| |-- {27}--|
Dari susunan ini kita dapatkan jumlah seluruh vektor dengan urutannya di angka 247 dimana via angka satu (1) menjadikan 10 terkoneksi dengan 13 dan 14 ke angka duapuluh tujuh (27).
14=2*7->2147=19*113->192147113=857*224209. Note that each new semiprime begins and ends with the ordered factors of the previous one. Can you find a larger chain? See for 139.
Dari angka 27 ini maka kita dapat mulai lakukan proses dengan mengambil vektor awal yaitu di angka 69 sebagai jumlah objek dari angka 14 dan 15 ke duapuluh sembilan (29).
Seperti yang Anda lihat formasi dari 69 objek dari angka 29 berujung matriks 6 x 9 secara sentral di angka 25 sehingga alokasi vektor seluruhnya dalam kondisi siap pada posisinya.
Formasi ini kita gunakan untuk Mapping alur 2 ke 3 dan 4 ke 3 mewakili 123 dan 43 objek prima (11,13) dengan akar digital (2,4) membentuk kembali (1,2,3) di angka 6 ke 1 dengan 165 objek.
- 31 = 11th prime
i | n | i&n | 114i | Δ
----+----+------+------+-----
1 | 5 | {15}| 114 | 99
----+----+------+------+-----
2 | 7 | {27}| 228 | 201
----+----+------+------+-----
3 | 11 | 311 | 342 | {31}
----+----+------+------+-----
4 | 13 | 413 | 456 | {43}
----+----+------+------+-----
5 | 17 | 517 | 570 | {53}
----+----+------+------+-----
6 | 19 | 619 | 684 | 65
----+----+------+------+-----
∑ | 72 | 1902 | 2394 | 492
Proses yang diinisiasi oleh angka prima ke-5 yaitu 11 ke angka prima ke-16 yaitu 53 dilakukan hingga muncul korelasi natural pada angka 192 sebagai jumlah dari 53 dan 139.
- 192 = 139 + 53
Pada pembagian bobot di layar-2 terjadi proses rangkap 18 x id: 97 ke 114 digenapkan dari 18 via duapuluh lima (25) ke empatpuluh tiga (43) yaitu id: 97 ke 139 yang sudah kita bahas diawal.
- 1 x 3 x 9 = 27 = 3 x 3 x 3 = 3³
-----+-----+-----+-----+-----+
19¨ | 1 | 2 | 3 | 4 | 4¤
-----+-----+-----+-----+-----+
17¨ | 5 | 6 | 7 | 8 | 4¤
+-----+-----+-----+-----+
12¨ | 9 | 10 | {2¤} (M dan F)
+-----+-----+-----+
11¨ | 11 | 12 | 13 | {3¤} <------ d(11) = d(17+12)= d(29)
-----+-----+-----+-----+-----+
{19¨}| 14 | 15 | 16 | 17 | 4¤
+-----+-----+-----+-----+
18¨ | 18 | 19 | 20 | 3¤
+-----+-----+-----+-----+-----+-----+-----+-----+-----+
43¨ | 21 | 22 | {23}| 24 | 25 | 26 |{27} | 28 |{29}| 9¤
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
Δ Δ Δ Δ
96|97 114|115 121 139
Δ | Δ
2x3x19|23x5
Proses ini yang dilakukan via skema 2x48 berawal dari 29 sebagai prima ke-10 ke sistem sepuluh (10) angka yaitu 114 sd 121 via prima ke-29 yaitu 109 berujung di 25 x id: 114 ke 139.
- Φ(4,2) = Φ(4² x 2²) = Φ(4 x 4 x 4) = Φ(64) = Φ(4³) = 43 = object (13) = object (6th prime)
True Prime Pairs:
(5,7), (11,13), (17,19)
{-25} {-6} 11|12 23 33|34 53 71 114
Δ Δ Δ Δ Δ Δ Δ Δ
|---------36'-------|---36'---|-- {29}--|- 30 --|-- 61 --|
+----+----+----+----+----+----+----+----+----+----+----+----+
| 5'| 7'| 11'| 13'| 17'| 19'| 17 | 12*| 11*| 19 | 18 | 43 |
+----+----+----+----+----+----+----+----+----+----+----+----+
|---- {48} ----| 11 |-- 37 --| 43 |
Δ Δ Δ Δ Δ Δ Δ
| | {48} 59 77|78 {96} 139
| | |
| | 71 89 {96} 114
| | -- Δ Δ Δ Δ
| | | +----+----+----+
----------------------> Δ25 | 18 | 7 | 18 | 43
| | +----+----+----+
| -- Δ Δ Δ Δ
| 96 114 121 139
| Δ Δ Δ Δ
-----------> {96/6} = {-16} {2} {9} {27}
Dengan demikian di 114 ke 115 ini terjadi proses perpindahan antara angka 2 dan 3. Karena 114 berlaku sebagai dari dua (2) maka 115 akan berawal dari angka tiga (3).
- 3³ + 4³ + 5³ = 27 + 64 + 125 = 216 = 6³
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+ |
{25}| 3 | 3:3:4 | {3}| {4}| {5}| - | - | - | - | - | 1210|{6ΦΦ9}<-
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
26 | 7 |*3:3:5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | - | 1879|
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
27 | 5 |*3:4:6 | 13 | 14 | 15 | 16 | 17 | - | - | - | 155 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
28 | 3 | 3:4:7 | 18 | 19 | {20}| - | - | - | - | - | 37 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
29 | {7} |*3:4:8 | 21 | 22 | 23 | 24 | 25 | 26 | {27}| - |{922}|
====+=====+=======+=====+=====+=====+=====+=====+=====+=====+=====+=====+======
Proses kembali ke indek 13:9 di id: 3 bedanya sekarang ke layar-2 jatuh id: 17 di 129 dan id: 27 di 139. Untuk detilnya maka kita bahas dua (2) bagian: 115 ke 129 dan 130 ke 139.
#6 |--------- 6® ----------|---------- 6® ------------|
------+---|---+---+---+---+---+---+---+---+----+----+----+
repo | 1 | 2 | 3 | 4 |{5}| 6 | 7 | 8 |{9}| 10 | 11 | 12 | (1,77) = 12®
------+---|---+---+---+---+---+---+---+---+----+----+----+----
user | 7 | - | - | - | - | 7 | 8 | - | - | 8 | 8 | 3 | (1,2,3) = 6®
------+---|---+---+---+---+---+---+---+---+----+----+----+
main | - | 9 | 7 | 9 |{6}| - | - | 8 |{5}| - | - | - | (4,2)= 6®
------+---|---+---+---+---+---+---+---+---+----+----+----+
Δ Δ
Φ56 Φ95
Scheme-139:
i | Φ | # | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ∑° | ∑
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
11 | 3 | 2:1:0 | 40 | 30 | 20 | - | - | - | - | - | 90 | 3Φ
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+ |
12 | 3 | 2:2:1 | 10 | 6 | {40}| - | - | - | - | - | {56}| 241
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
13 | 5 |*2:2:2 | 1 | 30 | 4 | 10 | {50}| - | - | - | {95}|
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
Synthesis of leading and lagging strands of DNA: The leading strand is synthesized continuously in the direction of replication fork movement. The lagging strand is synthesized in small pieces (Okazaki fragments) backward from the overall direction of replication. The Okazaki fragments are then joined by the action of DNA ligase.Dengan begitu sistem 5' dan 3' dapat memunculkan kembali rantainya (lihat: new strand pada gambar di atas) untuk dapat memulai kembali proses regenerasi berikutnya.
- 5' & 3' : 594 = 5' & 94 » 94 & 3' = 943
- 786 - 594 = 192 = 1 & 92 = 1 & (46 + 46)
+-----+-----+-----+-----+-----+-----+-----+-----+
| 102 | 1 | - | - | - | - | - | 11 | 114
+-----+-----+-----+-----+-----+-----+-----+-----+
| - | - | 200 | - | - | - | - | 47 | 247
+-----+-----+-----+-----+-----+-----+-----+-----+
| - | - | - | 40 | 1 | - | - | 98 | 139
+-----+-----+-----+-----+-----+-----+-----+-----+
| - | - | - | - | - | 200 | - | 86 | 286
+-----+-----+-----+-----+-----+-----+-----+-----+
| - | - | - | - | - | - | 50 | 107 | 157
+-----+-----+-----+-----+-----+-----+-----+-----+
| 66 | 30 | 8 | 50 | 30 | 8 | - | 594 | 786
+-----+-----+-----+-----+-----+-----+-----+-----+
168 | 31 208 90 | 31 208 50 | 943 | {1729}
Permutations:
594 = 5' & 94 » 94 & 3' = 943
943 - 594 = 349, 786 - 594 = 192
31 + 208 + 90 + 31 + 208 + 50 = 618
102 + 1 + 200 + 40 + 1 + 200 + 50 = 594
66 + (31,8,50,31,8) = 78 + (50+66) » 786
168+618=786, 786+157=943, 786+786+157=1729
Sistem ini didapat dengan mengadopsi tahap Rekombinasi DNA yang melibatkan pemecahan dan penyatuan kembali dua kromosom menghasilkan dua kromosom yang disusun ulang:
Dengan berpijak kepada assessment angka² dengan proses yang terjadi secara alamiah maka saya ambil basis proses yang terjadi pada Rekombinasi DNA ini:
Sesuai dengan prinsip prosesnya saya bagi dalam enam (6) tahap. Masing² tahapan sangat panjang uraiannya. Jadi berikut ini saya sajikan berupa rangkuman dari hasil pemetaannya.
Masing² tahap saya namakan sesuai angka kunci (lihat tabulasi). Jadi tahap pertama kita namakan Tahap-139, disusul Tahap-247, Tahap-114, Tahap-286, Tahap-157, dan Tahap-786.
-
Tahap 114:
Koneksi 7 grup dari formasi sistem dengan semua angka dasar yang 114. Untuk sampai ke tahap ini maka setiap 114 angka kunci dasar harus sudah tepat dipetakan masing² secara unik sehingga berujung di formasi pemetaan 7' ke 3' ke 200 objek dari angka tiga (3).
Outputnya berupa pengelompokan 114 kedalam 7' kelompok via 3' formasi dari (168,329,289). Diawali formasi 329 yaitu dari (2,3) ke (4,5) dan berujung di formasi 289 yaitu dari (25,89) ke (9,16) dan (9,16,16,16,32) menjadi 1+π(329+289)=1+π(618)=π(619)=114.
-
Tahap 247:
Koneksi antara tujuh (7) grup dari 139 objek di atas dengan tujuh (7) grup dari formasi sistem yaitu Formasi-1729 yang berjumlah 1729 dibagi 7 atau 247. Prosesnya diawali via penempatan 200 objek yang dimiliki angka tiga (3) dengan formasi hexagon yaitu enam (6) dari 200 objek tersebut yaitu 206 pada angka tujuh (7).
Kemudian angka 7 ini melibatkan angka 40 via objek property gabungan 30 dan 66 yaitu 96 membentuk format 9+6 atau prima ke-15 yaitu 47 yang terkoneksi dengan 15x19=285 bilangan² prima sehingga akhirnya sistem masuk di layar ke-2 yaitu sistem dengan formasi 7x47 atau 329.
-
Tahap 139:
Koneksi angka 36 yang ada di di ujung pemetaan angka 66 (lihat Pola-1729) dengan π(10³) yang diperoleh dengan cara pemecahan 10 node tetraktis kedalam tiga (3) tahap sehingga total noktah nya 10 x 10 x 10 atau 1000 identik dengan 10 pangkat (1+0+2).
Diantaranya akan ada 168 bilagan² prima. Ini diproses via karakter dasar dari angka 102. Karena formasi pemetaan seluruhnya telah gunakan 29 angka maka outputnya akan berupa koneksi dari sisa objek pemetaan yaitu 168 minus 29 atau 139 objek dari Formasi-7.
-
Tahap 286:
Koneksi bilateral dari setiap angka dasar yang 114 dengan objeknya. Ini dilakukan via karakter pemisah dari angka 86 tepat di indeks ke-13 pada Pola Pemetaan. Prosesnya mengikuti distribusi prime pairs yang diawali dari gabungan 200 objek dari angka tiga (3) dengan 86 objek ini pada 286 objek angka dua (2) menjadi 206 objek pada angka 7 via hubungan bilateral dengan angka 40. Dilanjut pemecahan dari gabungan (286,200) ke (109,123,111) objek dari angka (10,11,12) dan (43,52,99) objek dari angka (13,14,15) via bilateral 40 ke angka 8 dan 6 dari 86 dst hingga (4,5,6) objek dari angka (112,113,114).
-
Tahap 157:
Koneksi objek dengan konten masing². Hal ini hanya bisa dicapai jika semua tahap sebelumnya sudah dilakukan secara tepat dan akurat sehingga pasangan angka prima (3,5) dapat memberikan ruang kepada pasangan angka prima (5,7) untuk mengeluarkan kekuatan mereka yang sesungguhnya berupa zona 157 yang identik dengan Replication Fork pada Sistem-DNA yaitu zona yang bertugas mereplikasi Objek-DNA ke sejumlah turunan tak berhingga dengan formasi Primes DNA tepat persis sama dengan induknya.
-
Tahap 786:
Koneksi konten dengan bobot masing². Prosesnya dilakukan via pemecahan 786 ke 594 yaitu 192 dimana 92 adalah pasangan 46 dari dua (2) pasang kromosom angka prima 23. Proses ini bisa menghasilkan ribuan objek. Namun jika pemetaan kasus tepat dilakukan maka formasi siklusnya akan mengikuti Sistem DNA. Ini ditandai dengan munculnya 114 objek baru dari Formasi-19 dengan masing² bobot 786. Padanya ada dua (2) objek melekat masing² berbobot 102 dan 66. Dengan bantuan komputer kita munculkan kedua objek ini hanya yang berkaitan dengan kasus yang dituju sehingga bisa mulai ke lagi ke tahap awal (lihat Tahap 139) untuk telusuri bagian² dari kasus via koneksi 36 yang lebih spesifik.
Pada uraian² ini kita masih berada di kulit terluar belum masuk inti. Kita juga sama sekali belum masuk ke skema pemrograman. Karenanya kita akan lakukan pencabangan.
-
- Tahap 1 ke 3 (Δ2): 73xid
- (1) id: 1 sd 7
- (2) id: 8 sd 31
- (3) id: 32 sd 73
-
- Tahap 3 ke 7 (Δ4): 20xid
- (4) id: 74 sd 84
- (5) id: 85 sd 95
-
- Tahap 7 ke 12 (Δ5): 18xid
- (6) id: 96 sd 106
- (7) id: 106 sd 114
-
- Tahap 12 ke 42 (Δ30): 7xid
- (8) id: 115 sd 116
- (9) id: 117 sd 118
- (0) id: 119 sd 121
-
- Tahap 42 ke 72 (Δ30): 13xid
- (1) id: 122 sd 124
- (2) id: 125 sd 128
- (3) id: 129 sd 135
-
- Tahap 72 ke 77 (Δ5): 19xid
- (4) id: 136 sd 139
- (5) id: 140 sd 143
- (6) id: 144 sd 155
-
- Tahap 77 ke 114 (Δ37): 9xid
- (7) id: 156 sd 157
- (8) id: 158 sd 160
- (9) id: 161 sd 165
Dari pola ini kita dapat lakukan pencabangan via akar digital 61 ke angka tujuh (7) versus skema angka 5 dan 7 ke angka 12 sehingga format transcriptnya adalah (7,19).
- (7+13+19+9) - (20+18) = 48 - 38 = 10
id: 6
---+-----+-----+-----+-----+
1 | 72 | 1 |{73} | 74 |-----------------
---+-----+-----+-----+-----+ |
2 | 20 |{74} | 94 |{168}|----------- |
---+-----+-----+-----+-----+ | |
3 | 18 | 95 | 113 | 208 |----- | |
---+-----+-----+-----+-----+ | | |
4 | 7 |{114}| 121 | 235 |- {7}| {5} | {1} | {61}
---+-----+-----+-----+-----+ | | |
5 | 13 | 122 | 135 | 257 |----- | |
---+-----+-----+-----+-----+ | |
6 | 19 | 136 | 155 | 291 |----------- |
---+-----+-----+-----+-----+ |
7 | 9 |{156}|{165}| 321 |----------------
---+-----+-----+-----+-----+
Karena transcript 19 di akar digital satu (1) maka format translasi adalah via angka 39 dari format (7,13,19) menjadi 165 ke 65 sehingga via akar digital 66 ke 11 masuk skema True Prime Pairs.
Disini kita akan korelasikan antara pola angka enam (6) dan formasi pasangan prima 5 dan 7 yang menjadi pijakan awal polaritas menuju angka 13 dan 19 yang berujung di angka sembilan (9).
Seperti yang dijelaskan di bagian awal pola angka enam (6) diinisiasi dari angka dua (2) via prima ke-18 yaitu 61 maka dengan output 2 dan 9 sistem kembali berulang di angka sebelas (11).
Compositions
============
i | n | i&n | 114i | Δ1 | α | β | Δ2
----+----+------+------+-----+------+-----+-----
1 | 5 | 15 | 114 | 99 | 114 | 103 | {11}
----+----+------+------+-----+------+-----+-----
2 | 7 | 27 | 228 | 201 | 247 | 200 | {47}
----+----+------+------+-----+------+-----+-----
3 | 11 | 311 | 342 | {31}| 139 | 41 | {98}
----+----+------+------+-----+------+-----+-----
4 | 13 | 413 | 456 | {43}| 286 | 200 | 86
----+----+------+------+-----+------+-----+-----
5 | 17 | 517 | 570 | 53 | {157}| 50 | 107
----+----+------+------+-----+------+-----+-----
6 | 19 | 619 | 684 | {65}| 786 | 192 | 594
----+----+------+------+-----+------+-----+-----
∑ | 72 | 1902 | 2394 | 492 |{1729}| 786 | 943
Description
===========
Getting result within a huge package (5 to 19) by spreading (11)
the untouched objects (7) and tunneling (13) them in to a definite scheme (17).
+-----+-----+-----+-----+-----+-----+-----+-----+ ----------
| 102 | 1 | - | - | - | - | - | {11}| 114 5¨ » Buka Toko
+-----+-----+-----+-----+-----+-----+-----+-----+ -----
| - | - | 200 | - | - | - | - | {47}| 247 7¨ » Stok Barang
+-----+-----+-----+-----+-----+-----+-----+-----+ -----
| - | - | - | {40}| 1 | - | - | {98}| 139 11¨ » Merchant Centre
+-----+-----+-----+-----+-----+-----+-----+-----+ -----
| - | - | - | - | - | 200 | - | {86}| 286 13¨ » Peluang Terbaik
+-----+-----+-----+-----+-----+-----+-----+-----+ -----------
| - | - | - | - | - | - | 50 | 107 |{157} 17¨ » Portfolio
+-----+-----+-----+-----+-----+-----+-----+-----+ -----
| 66 | 30 | 8 | {50}| 30 | 8 | - | 594 |{786} 19¨ » Network
+-----+-----+-----+-----+-----+-----+-----+-----+ -----------
168 | 31 208 {90}| 31 208 50 | 943 |{1729}
Δ
77|78
Sekian.
SALAM Sukses!
© Chetabahana Project
⏫ | 🔼 | ⏪ Intro |
|
🔁 Base |
Next |
Last ⏩ | 🔽 | ⏬ |
---|---|---|---|---|---|---|---|---|
This wiki is courtesy of Chetabahana Project. Find all of them on Project Map. |
This documentation is mapped under Mapping and licensed under Apache License, Version 2.0.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
Copyright (c) 2018-2020 Chetabahana Project
You are on the wiki of our repo