医智汇融——多模态医疗大数据计算平台
基于多模态多组学研究的统一的算法平台,上传相应的数据,即可开展一站式算法流程设计。
持续更新中。并对相关文章进行汇总。
-
Laleh, Narmin Ghaffari, et al. "Benchmarking weakly-supervised deep learning pipelines for whole slide classification in computational pathology." Medical image analysis 79 (2022): 102474. [code], [paper]
作者测试了6种深度学习方法的性能。
-
Lee, Yongju, et al. "Derivation of prognostic contextual histopathological features from whole-slide images of tumours via graph deep learning." Nature Biomedical Engineering (2022): 1-15. [paper], [code]
充分挖掘了病理上下文肿瘤微环境。
-
Li, Xintong, et al. "A comprehensive review of computer-aided whole-slide image analysis: from datasets to feature extraction, segmentation, classification and detection approaches." Artificial Intelligence Review (2022): 1-70. [paper]
-
Wang, Xiyue, et al. "Transformer-based unsupervised contrastive learning for histopathological image classification." Medical Image Analysis 81 (2022): 102559. [paper], [code]
用于组织病理学图像的基于 Transformer 的无监督特征提取器。
-
Leng, Dongjin, et al. "A benchmark study of deep learning-based multi-omics data fusion methods for cancer." Genome biology 23.1 (2022): 1-32. [paper], [code]
对多组学数据融合方法进行了系统性的研究和对比。
-
Schneider, Lucas, et al. "Integration of deep learning-based image analysis and genomic data in cancer pathology: A systematic review." European Journal of Cancer 160 (2022): 80-91. [paper]
-
Zheng, Shuai, et al. "Multi-modal Graph Learning for Disease Prediction." IEEE Transactions on Medical Imaging (2022). [paper], [code]