-
Notifications
You must be signed in to change notification settings - Fork 40
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
javachen
committed
Jun 1, 2015
1 parent
0477010
commit 12c4f10
Showing
3 changed files
with
238 additions
and
65 deletions.
There are no files selected for viewing
64 changes: 64 additions & 0 deletions
64
src/main/scala/com/javachen/spark/examples/mllib/EvaluateResult.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,64 @@ | ||
package com.javachen.grab | ||
|
||
import org.apache.spark.mllib.recommendation.{ALS, MatrixFactorizationModel, Rating} | ||
import org.apache.spark.rdd.RDD | ||
|
||
/** | ||
* | ||
* Created by <a href="mailto:[email protected]">june</a> on 2015-05-27 09:13. | ||
*/ | ||
object EvaluateResult { | ||
def coverage(training: RDD[Rating],userRecommends:RDD[(Int, List[Int])])={ | ||
userRecommends.flatMap(_._2).distinct().count.toDouble / training.map(_.product).distinct().count | ||
} | ||
|
||
def popularity(training: RDD[Rating],userRecommends:RDD[(Int, List[Int])])={ | ||
var ret = 0.0 | ||
var n=0 | ||
val item_popularity=training.map{ case Rating(user, product, rate) => | ||
(product,(user, rate)) | ||
}.groupByKey(4).map{case (product,list)=> | ||
(product,list.size) | ||
}.collectAsMap() | ||
|
||
userRecommends.flatMap(_._2).collect().foreach { p => | ||
ret = ret + math.log(1 + item_popularity.get(p).get) | ||
n = n + 1 | ||
} | ||
|
||
ret/n | ||
} | ||
|
||
def recallAndPrecisionAndF1(training: RDD[Rating],userRecommends:RDD[(Int, List[Int])]):(Double, Double,Double) = { | ||
val usersProducts: RDD[(Int, Int)] = training.map { case Rating(user, product, rate) => | ||
(user, product) | ||
} | ||
|
||
val groupData=userRecommends.join(usersProducts.groupByKey().map {case (k,v) => (k,v.toList)}) | ||
|
||
val (hit, testNum, recNum) = groupData.map{ case (user, (mItems, tItems)) => | ||
var count = 0 | ||
// 计算准确率:推荐命中商品数/实际推荐商品数, topN为推荐上限值 | ||
val precNum = mItems.length | ||
for (i <- 0 until precNum) | ||
if (tItems.contains(mItems(i))) | ||
count += 1 | ||
(count, tItems.length, precNum) }.reduce( (t1, t2) => (t1._1 + t2._1, t1._2 + t2._2, t1._3 + t2._3) ) | ||
|
||
val recall: Double = hit * 1.0 / testNum | ||
val precision: Double = hit * 1.0 / recNum | ||
val f1: Double = 2 * recall * precision / (recall + precision) | ||
|
||
println(s"$hit,$testNum,$recNum") | ||
(recall,precision,f1) | ||
} | ||
|
||
def recallAndPrecision(test:RDD[Rating],result:RDD[Rating]):Double = { | ||
val numHit: Long = result.intersection(test).count | ||
val recall: Double = numHit * 1.0 / test.count | ||
val precision: Double = numHit * 1.0 / result.count | ||
val f1: Double = 2 * recall * precision / (recall + precision) | ||
System.out.println("recall : " + recall + "\nprecision : " + precision + "\nf1 : " + f1) | ||
f1 | ||
} | ||
} |
65 changes: 0 additions & 65 deletions
65
src/main/scala/com/javachen/spark/examples/mllib/ScalaALS.scala
This file was deleted.
Oops, something went wrong.
174 changes: 174 additions & 0 deletions
174
src/main/scala/com/javachen/spark/examples/mllib/ScalaLocalALS.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,174 @@ | ||
package com.javachen.grab | ||
|
||
import org.apache.spark.mllib.recommendation.{ALS, Rating} | ||
import org.apache.spark.rdd.RDD | ||
import org.apache.spark.{SparkConf, SparkContext} | ||
import scala.sys.process._ | ||
|
||
/** | ||
* 本地模式运行 | ||
*/ | ||
object ScalaLocalALS { | ||
def main(args: Array[String]): Unit = { | ||
val sc = new SparkContext(new SparkConf().setAppName("Scala Collaborative Filtering Example")) | ||
|
||
// 加载并解析数据 | ||
val data = sc.textFile("data/ml-1m/ratings.dat") | ||
|
||
val ratings = data.map(_.split("::") match { case Array(user, item, rate, ts) => | ||
Rating(user.toInt, item.toInt, rate.toDouble) | ||
}).cache() | ||
|
||
val users = ratings.map(_.user).distinct() | ||
val products = ratings.map(_.product).distinct() | ||
println("Got "+ratings.count()+" ratings from "+users.count+" users on "+products.count+" products.") | ||
//Got 1000209 ratings from 6040 users on 3706 products. | ||
|
||
val numPartitions=4 | ||
val training= ratings.repartition(numPartitions) | ||
|
||
val rank = 12 | ||
val lambda = 0.01 | ||
val numIterations = 20 | ||
val model = ALS.train(training, rank, numIterations, lambda) | ||
|
||
//从 ratings 中获得只包含用户和商品的数据集 | ||
val usersProducts = training.map { case Rating(user, product, rate) => | ||
(user, product) | ||
} | ||
|
||
usersProducts.count //Long = 1000209 | ||
|
||
//使用推荐模型对用户商品进行预测评分,得到预测评分的数据集 | ||
var predictions = model.predict(usersProducts).map { case Rating(user, product, rate) => | ||
((user, product), rate) | ||
} | ||
|
||
predictions.count //Long = 1000209 | ||
|
||
//将真实评分数据集与预测评分数据集进行合并 | ||
val ratesAndPreds = training.map { case Rating(user, product, rate) => | ||
((user, product), rate) | ||
}.join(predictions) | ||
|
||
ratesAndPreds.count //Long = 1000209 | ||
|
||
//然后计算根均方差 | ||
val rmse= math.sqrt(ratesAndPreds.map { case ((user, product), (r1, r2)) => | ||
val err = (r1 - r2) | ||
err * err | ||
}.mean()) | ||
|
||
println(s"RMSE = $rmse") | ||
|
||
//保存预测评分,确保只生成一个文件,并排序 | ||
"rm -r /tmp/result".! | ||
ratesAndPreds.sortByKey().repartition(1).sortBy(_._1).map({ | ||
case ((user, product), (rate, pred)) => (user + "," + product + "," + rate + "," + pred) | ||
}).saveAsTextFile("/tmp/result") | ||
|
||
var predictionsByUser = predictions.map { case ((user, product), rate) => | ||
(user, (product, rate)) | ||
}.groupByKey(numPartitions).map{case (user_id,list)=> | ||
(user_id,list.toList.sortBy {case (goods_id,rate)=> - rate}) | ||
} | ||
|
||
users.take(5) //Array[Int] = Array(384, 1084, 4904, 3702, 5618) | ||
predictionsByUser.collect.toMap.get(384).get.size //Int = 22 | ||
predictionsByUser.collect.toMap.get(384).get.take(10) | ||
//List((3671,5.028573740954833), | ||
// (593,4.752628162378783), | ||
// (1304,4.320285784582784), | ||
// (2947,4.283574992381999), | ||
// (1201,4.169434788726177), | ||
// (3037,4.105002333711454), | ||
// (1207,4.00591692913912), | ||
// (260,4.0001475531558714), | ||
// (2951,3.9523150000184506), | ||
// (1197,3.8872705071947635)) | ||
|
||
val myProducts= ratings.filter(_.user == 384) | ||
myProducts.count //Int=22 | ||
var candidates = products.map(product => (384, product)) | ||
candidates.count //Long = 3706 | ||
var recommends = model.predict(candidates).sortBy(-_.rating) | ||
recommends.count //Long = 3706 | ||
recommends.take(10) | ||
//Array( | ||
// Rating(384,2545,8.354966018818265), | ||
// Rating(384,129,8.113083736094676), | ||
// Rating(384,184,8.038113395650853), | ||
// Rating(384,811,7.983433591425284), | ||
// Rating(384,1421,7.912044967873945), | ||
// Rating(384,1313,7.719639594879865), | ||
// Rating(384,2892,7.53667094600392), | ||
// Rating(384,2483,7.295378004543803), | ||
// Rating(384,397,7.141158013610967), | ||
// Rating(384,97,7.071089782695754) | ||
// ) | ||
recommends.take(10).map(_.product) | ||
//Array[Int] = Array(2545, 129, 184, 811, 1421, 1313, 2892, 2483, 397, 97) | ||
var hit=myProducts.map(_.product).collect().intersect(recommends.take(10).map(_.product)) //0 | ||
var percent = hit.size.toDouble / myProducts.count //0 | ||
|
||
candidates= products.subtract(myProducts.map(_.product)).map(x => (384, x)) | ||
candidates.count //Long = 3684 | ||
recommends = model.predict(candidates).sortBy(-_.rating) | ||
recommends.count //Long = 3684 | ||
recommends.take(10).map(_.product) | ||
//Array[Int] = Array(2545, 129, 184, 811, 1421, 1313, 2892, 2483, 397, 97) | ||
|
||
hit=myProducts.map(_.product).collect().intersect(recommends.take(10).map(_.product)) //0 | ||
percent = hit.size.toDouble / myProducts.count //0 | ||
|
||
var recommendsArray=model.recommendProducts(384, 10) | ||
//Array( | ||
// Rating(384,2545,8.354966018818265), | ||
// Rating(384,129,8.113083736094676), | ||
// Rating(384,184,8.038113395650853), | ||
// Rating(384,811,7.983433591425284), | ||
// Rating(384,1421,7.912044967873945), | ||
// Rating(384,1313,7.719639594879865), | ||
// Rating(384,2892,7.53667094600392), | ||
// Rating(384,2483,7.295378004543803), | ||
// Rating(384,397,7.141158013610967), | ||
// Rating(384,97,7.071089782695754)) | ||
|
||
|
||
var res=users.take(1).flatMap { user => | ||
model.recommendProducts(user, 10) | ||
} | ||
|
||
res.map(_.product) | ||
|
||
var start = System.currentTimeMillis() | ||
candidates = users.cartesian(products) | ||
var recommendsByUserTopN = model.predict(candidates).map { case Rating(user, product, rate) => | ||
(user, (product, rate)) | ||
}.groupByKey(numPartitions).map{case (user,list)=> | ||
(user,list.toList.sortBy {case (product,rate)=> - rate}.take(10).map{case (product,rate)=>product}) | ||
} | ||
|
||
"rm -rf data/recommendsByUserTopN".! | ||
recommendsByUserTopN.saveAsTextFile("data/recommendsByUserTopN") | ||
println("Cost Time = " + (System.currentTimeMillis() - start) * 1.0 / 1000) | ||
|
||
recommendsByUserTopN.collect.toMap.get(384).get | ||
//List((2545,8.354966018818265), | ||
// (129,8.113083736094676), | ||
// (184,8.038113395650853), | ||
// (811,7.983433591425284), | ||
// (1421,7.912044967873945), | ||
// (1313,7.719639594879865), | ||
// (2892,7.53667094600392), | ||
// (2483,7.295378004543803), | ||
// (397,7.141158013610967), | ||
// (97,7.071089782695754)) | ||
|
||
|
||
EvaluateResult.coverage(training,recommendsByUserTopN) | ||
EvaluateResult.popularity(training,recommendsByUserTopN) | ||
EvaluateResult.recallAndPrecisionAndF1(training,recommendsByUserTopN) | ||
|
||
} | ||
} |