-
Notifications
You must be signed in to change notification settings - Fork 74
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
ca53cc4
commit 883aa63
Showing
4 changed files
with
243 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1,3 @@ | ||
include("./config.jl") | ||
include("./load.jl") | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,239 @@ | ||
using ..Layers | ||
using ..Layers: CompositeEmbedding, SelfAttention, CrossAttention, MultiheadQKVAttenOp, CausalMultiheadQKVAttenOp | ||
using Functors | ||
using NeuralAttentionlib | ||
using NeuralAttentionlib: WithScore | ||
|
||
bart_pe_shift(x) = bart_pe_shift(size(x, 2)) | ||
bart_pe_shift(len::Integer) = bart_pe_shift(Base.OneTo(len)) | ||
bart_pe_shift(x::AbstractArray{<:Integer}) = x .+ 2 | ||
|
||
@hgfdef Bart ( | ||
Model => (embed, seq2seq), | ||
# ForConditionalGeneration, | ||
# ForSequenceClassification, | ||
# ForQuestionAnswering, | ||
# ForCausalLM, | ||
) | ||
|
||
basemodelkey(::Type{<:HGFBartPreTrainedModel}) = :model | ||
|
||
function load_model(_type::Type{HGFBartModel}, cfg, state_dict, prefix) | ||
embed = load_model(_type, CompositeEmbedding, cfg, state_dict, prefix) | ||
encoder = load_model(_type, TransformerBlock, cfg, state_dict, joinname(prefix, "encoder")) | ||
decoder = load_model(_type, TransformerDecoderBlock, cfg, state_dict, joinname(prefix, "decoder")) | ||
seq2seq = Seq2Seq(encoder, decoder) | ||
return HGFBartModel(embed, seq2seq) | ||
end | ||
|
||
function load_model(::Type{<:HGFBartPreTrainedModel}, ::Type{Layers.Embed}, cfg, state_dict, prefix) | ||
vocab_size, dims, pad_id = cfg[:vocab_size], cfg[:d_model], cfg[:pad_token_id] | ||
factor = Float32(cfg[:init_std]) | ||
scale = cfg.scale_embedding ? Float32(sqrt(dims)) : nothing | ||
token_weight = getweight(Layers.Embed, state_dict, joinname(prefix, "weight")) do | ||
weight = weight_init(vocab_size, dims, factor)() | ||
weight[:, pad_id+1] .= 0 | ||
return weight | ||
end | ||
return Layers.Embed(scale, token_weight) | ||
end | ||
function load_model(::Type{<:HGFBartPreTrainedModel}, ::Type{Layers.FixedLenPositionEmbed}, cfg, state_dict, prefix) | ||
dims = cfg[:d_model] | ||
max_pos = cfg[:max_position_embeddings] | ||
factor = Float32(cfg[:init_std]) | ||
pos_weight = getweight(weight_init(max_pos + 2 #= following HGF Bart's hack =#, dims, factor), | ||
Layers.Embed, state_dict, joinname(prefix, "embed_positions.weight")) | ||
return Layers.FixedLenPositionEmbed(pos_weight) | ||
end | ||
|
||
function load_model(_type::Type{<:HGFBartPreTrainedModel}, ::Type{CompositeEmbedding}, cfg, state_dict, prefix) | ||
dims = cfg[:d_model] | ||
token_embed = load_model(_type, Layers.Embed, cfg, state_dict, joinname(prefix, "shared")) | ||
enc_pos = load_model(_type, Layers.FixedLenPositionEmbed, cfg, state_dict, joinname(prefix, "encoder")) | ||
dec_pos = load_model(_type, Layers.FixedLenPositionEmbed, cfg, state_dict, joinname(prefix, "decoder")) | ||
enc_embed = CompositeEmbedding(token = token_embed, position = (.+, enc_pos, bart_pe_shift)) | ||
dec_embed = CompositeEmbedding(token = token_embed, position = (.+, dec_pos, bart_pe_shift)) | ||
enc_ln = _load_layernorm(state_dict, joinname(prefix, "encoder.layernorm_embedding"), dims) | ||
dec_ln = _load_layernorm(state_dict, joinname(prefix, "decoder.layernorm_embedding"), dims) | ||
return Layers.Parallel{(:encoder_input, :decoder_input)}(( | ||
Layers.Chain(enc_embed, enc_ln), | ||
Layers.Chain(dec_embed, dec_ln))) | ||
end | ||
|
||
load_model(::Type{<:HGFBartPreTrainedModel}, ::Type{Layers.LayerNorm}, cfg, state_dict, prefix) = | ||
_load_layernorm(state_dict, prefix, cfg[:d_model]) | ||
|
||
function load_model( | ||
::Type{<:HGFBartPreTrainedModel}, | ||
::Type{<:SelfAttention{A}}, | ||
cfg, state_dict, prefix | ||
) where {A <: Union{MultiheadQKVAttenOp, CausalMultiheadQKVAttenOp}} | ||
dims = cfg[:d_model] | ||
head = cfg[A <: CausalMultiheadQKVAttenOp ? :encoder_attention_heads : :decoder_attention_heads] | ||
p = Float64(cfg[:attention_dropout]); p = iszero(p) ? nothing : p | ||
return_score = cfg[:output_attentions] | ||
factor = Float32(cfg[:init_std]) | ||
qkv_proj = Layers.Fork( | ||
_load_dense(state_dict, joinname(prefix, "q_proj"), dims, dims, factor, true), | ||
_load_dense(state_dict, joinname(prefix, "k_proj"), dims, dims, factor, true), | ||
_load_dense(state_dict, joinname(prefix, "v_proj"), dims, dims, factor, true), | ||
) | ||
o_proj = _load_dense(state_dict, joinname(prefix, "out_proj"), dims, dims, factor, true) | ||
if A <: CausalMultiheadQKVAttenOp | ||
op = CausalMultiheadQKVAttenOp(head, p) | ||
else | ||
op = MultiheadQKVAttenOp(head, p) | ||
end | ||
return_score && (op = WithScore(op)) | ||
return SelfAttention(op, qkv_proj, o_proj) | ||
end | ||
function load_model(::Type{<:HGFBartPreTrainedModel}, ::Type{Layers.CrossAttention}, cfg, state_dict, prefix) | ||
head, dims = cfg[:decoder_attention_heads], cfg[:d_model] | ||
p = Float64(cfg[:attention_dropout]); p = iszero(p) ? nothing : p | ||
return_score = cfg[:output_attentions] | ||
factor = Float32(cfg[:init_std]) | ||
q_proj = _load_dense(state_dict, joinname(prefix, "q_proj"), dims, dims, factor, true) | ||
kv_proj = Layers.Fork( | ||
_load_dense(state_dict, joinname(prefix, "k_proj"), dims, dims, factor, true), | ||
_load_dense(state_dict, joinname(prefix, "v_proj"), dims, dims, factor, true), | ||
) | ||
o_proj = _load_dense(state_dict, joinname(prefix, "out_proj"), dims, dims, factor, true) | ||
op = MultiheadQKVAttenOp(head, p) | ||
return_score && (op = WithScore(op)) | ||
return CrossAttention(op, q_proj, kv_proj, o_proj) | ||
end | ||
|
||
function _load_bart_ffn(state_dict, prefix, dims, ff_dims, factor, p, act) | ||
fc1 = _load_dense(state_dict, joinname(prefix, "fc1"), dims, ff_dims, factor, true, act) | ||
fc2 = _load_dense(state_dict, joinname(prefix, "fc2"), ff_dims, dims, factor, true) | ||
return Layers.Chain(Layers.DropoutLayer(fc1, p), fc2) | ||
end | ||
|
||
function load_model(_type::Type{<:HGFBartPreTrainedModel}, ::Type{<:TransformerBlock}, cfg, state_dict, prefix) | ||
dims = cfg[:d_model] | ||
ff_dims = cfg[:encoder_ffn_dim] | ||
factor = Float32(cfg[:init_std]) | ||
act_p = Float64(cfg[:activation_dropout]); act_p = iszero(act_p) ? nothing : act_p | ||
act = ACT2FN[Symbol(cfg[:activation_function])] | ||
n = cfg[:encoder_layers] | ||
p = Float64(cfg[:dropout]); p = iszero(p) ? nothing : p | ||
collect_output = cfg[:output_attentions] || cfg[:output_hidden_states] | ||
blocks = [] | ||
for i = 1:n | ||
lprefix = joinname(prefix, :layers, i-1) | ||
sa = load_model(_type, SelfAttention{MultiheadQKVAttenOp}, cfg, state_dict, joinname(lprefix, "self_attn")) | ||
sa_ln = load_model(_type, Layers.LayerNorm, cfg, state_dict, joinname(lprefix, "self_attn_layer_norm")) | ||
sa = Layers.PostNormResidual(Layers.DropoutLayer(sa, p), sa_ln) | ||
ff = _load_bart_ffn(state_dict, lprefix, dims, ff_dims, factor, act_p, act) | ||
ff_ln = load_model(_type, Layers.LayerNorm, cfg, state_dict, joinname(lprefix, "final_layer_norm")) | ||
ff = Layers.PostNormResidual(Layers.DropoutLayer(ff, p), ff_ln) | ||
block = TransformerBlock(sa, ff) | ||
push!(blocks, block) | ||
end | ||
collect_f = collect_output ? Layers.collect_outputs : nothing | ||
trf = Transformer(Tuple(blocks), collect_f) | ||
return trf | ||
end | ||
|
||
function load_model(_type::Type{<:HGFBartPreTrainedModel}, ::Type{<:TransformerDecoderBlock}, cfg, state_dict, prefix) | ||
dims = cfg[:d_model] | ||
ff_dims = cfg[:decoder_ffn_dim] | ||
factor = Float32(cfg[:init_std]) | ||
act_p = Float64(cfg[:activation_dropout]); act_p = iszero(act_p) ? nothing : act_p | ||
act = ACT2FN[Symbol(cfg[:activation_function])] | ||
n = cfg[:decoder_layers] | ||
p = Float64(cfg[:dropout]); p = iszero(p) ? nothing : p | ||
collect_output = cfg[:output_attentions] || cfg[:output_hidden_states] | ||
blocks = [] | ||
for i = 1:n | ||
lprefix = joinname(prefix, :layers, i-1) | ||
sa = load_model(_type, SelfAttention{CausalMultiheadQKVAttenOp}, cfg, state_dict, joinname(lprefix, "self_attn")) | ||
sa_ln = load_model(_type, Layers.LayerNorm, cfg, state_dict, joinname(lprefix, "self_attn_layer_norm")) | ||
sa = Layers.PostNormResidual(Layers.DropoutLayer(sa, p), sa_ln) | ||
ca = load_model(_type, CrossAttention, cfg, state_dict, joinname(lprefix, "encoder_attn")) | ||
ca_ln = load_model(_type, Layers.LayerNorm, cfg, state_dict, joinname(lprefix, "encoder_attn_layer_norm")) | ||
ca = Layers.PostNormResidual(Layers.DropoutLayer(ca, p), ca_ln) | ||
ff = _load_bart_ffn(state_dict, lprefix, dims, ff_dims, factor, act_p, act) | ||
ff_ln = load_model(_type, Layers.LayerNorm, cfg, state_dict, joinname(lprefix, "final_layer_norm")) | ||
ff = Layers.PostNormResidual(Layers.DropoutLayer(ff, p), ff_ln) | ||
block = TransformerDecoderBlock(sa, ca, ff) | ||
push!(blocks, block) | ||
end | ||
collect_f = collect_output ? Layers.collect_outputs : nothing | ||
trf = Transformer(Tuple(blocks), collect_f) | ||
return trf | ||
end | ||
|
||
function get_state_dict(m::HGFBartModel, state_dict, prefix) | ||
get_state_dict(HGFBartModel, m.embed, state_dict, prefix) | ||
get_state_dict(HGFBartModel, m.seq2seq, state_dict, prefix) | ||
return state_dict | ||
end | ||
|
||
function get_state_dict(p::Type{<:HGFBartPreTrainedModel}, m::Layers.Parallel, state_dict, prefix) | ||
# m.layer.encoder_input[1].token === m.layer.decoder_input[1].token for BartModel | ||
get_state_dict(p, m.layer.encoder_input[1].token, state_dict, joinname(prefix, "shared")) | ||
get_state_dict(p, m.layer.encoder_input, state_dict, joinname(prefix, "encoder")) | ||
get_state_dict(p, m.layer.decoder_input, state_dict, joinname(prefix, "decoder")) | ||
return state_dict | ||
end | ||
|
||
function get_state_dict(p::Type{<:HGFBartPreTrainedModel}, m::Layers.Chain{<:Tuple{CompositeEmbedding, Any}}, state_dict, prefix) | ||
get_state_dict(p, m[1].token, state_dict, joinname(prefix, "embed_tokens")) | ||
get_state_dict(p, m[1].position.embed, state_dict, joinname(prefix, "embed_positions")) | ||
get_state_dict(p, m[2], state_dict, joinname(prefix, "layernorm_embedding")) | ||
return state_dict | ||
end | ||
|
||
function get_state_dict(p::Type{<:HGFBartPreTrainedModel}, m::Seq2Seq, state_dict, prefix) | ||
get_state_dict(p, m.encoder, state_dict, joinname(prefix, "encoder")) | ||
get_state_dict(p, m.decoder, state_dict, joinname(prefix, "decoder")) | ||
return state_dict | ||
end | ||
|
||
function get_state_dict(p::Type{<:HGFBartPreTrainedModel}, m::Transformer, state_dict, prefix) | ||
for (i, t) in enumerate(m.blocks) | ||
get_state_dict(p, t, state_dict, joinname(prefix, "layers", i-1)) | ||
end | ||
return state_dict | ||
end | ||
|
||
function get_state_dict(p::Type{<:HGFBartPreTrainedModel}, m::Layers.Chain{<:Tuple{Any, Layers.Dense}}, | ||
state_dict, prefix) | ||
get_state_dict(p, m[1], state_dict, joinname(prefix, "fc1")) | ||
get_state_dict(p, m[2], state_dict, joinname(prefix, "fc2")) | ||
return state_dict | ||
end | ||
|
||
function get_state_dict(p::Type{<:HGFBartPreTrainedModel}, m::SelfAttention, state_dict, prefix) | ||
get_state_dict(p, m.qkv_proj.layers[1], state_dict, joinname(prefix, "q_proj")) | ||
get_state_dict(p, m.qkv_proj.layers[2], state_dict, joinname(prefix, "k_proj")) | ||
get_state_dict(p, m.qkv_proj.layers[3], state_dict, joinname(prefix, "v_proj")) | ||
get_state_dict(p, m.o_proj, state_dict, joinname(prefix, "out_proj")) | ||
return state_dict | ||
end | ||
function get_state_dict(p::Type{<:HGFBartPreTrainedModel}, m::CrossAttention, state_dict, prefix) | ||
get_state_dict(p, m.q_proj, state_dict, joinname(prefix, "q_proj")) | ||
get_state_dict(p, m.kv_proj.layers[1], state_dict, joinname(prefix, "k_proj")) | ||
get_state_dict(p, m.kv_proj.layers[2], state_dict, joinname(prefix, "v_proj")) | ||
get_state_dict(p, m.o_proj, state_dict, joinname(prefix, "out_proj")) | ||
return state_dict | ||
end | ||
|
||
function get_state_dict(p::Type{<:HGFBartPreTrainedModel}, m::TransformerBlock, state_dict, prefix) | ||
get_state_dict(p, m.attention.layer, state_dict, joinname(prefix, "self_attn")) | ||
get_state_dict(p, m.attention.norm, state_dict, joinname(prefix, "self_attn_layer_norm")) | ||
get_state_dict(p, m.feedforward.layer, state_dict, prefix) | ||
get_state_dict(p, m.feedforward.norm, state_dict, joinname(prefix, "final_layer_norm")) | ||
return state_dict | ||
end | ||
|
||
function get_state_dict(p::Type{<:HGFBartPreTrainedModel}, m::TransformerDecoderBlock, state_dict, prefix) | ||
get_state_dict(p, m.attention.layer, state_dict, joinname(prefix, "self_attn")) | ||
get_state_dict(p, m.attention.norm, state_dict, joinname(prefix, "self_attn_layer_norm")) | ||
get_state_dict(p, m.crossattention.layer, state_dict, joinname(prefix, "encoder_attn")) | ||
get_state_dict(p, m.crossattention.norm, state_dict, joinname(prefix, "encoder_attn_layer_norm")) | ||
get_state_dict(p, m.feedforward.layer, state_dict, prefix) | ||
get_state_dict(p, m.feedforward.norm, state_dict, joinname(prefix, "final_layer_norm")) | ||
return state_dict | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters