A robust, performance-focused and full-featured Redis client for Node and io.js.
Supports Redis >= 2.6.12 and (Node.js >= 0.10.16 or io.js).
ioredis is a robust, full-featured Redis client that is used in the world's biggest online commerce company Alibaba and many other awesome companies.
- Full-featured. It supports Cluster, Sentinel, Pipelining and of course Lua scripting & Pub/Sub (with the support of binary messages).
- High performance.
- Delightful API. It works with Node callbacks and Bluebird promises.
- Transformation of command arguments and replies.
- Transparent key prefixing.
- Abstraction for Lua scripting, allowing you to define custom commands.
- Support for binary data.
- Support for TLS.
- Support for offline queue and ready checking.
- Support for ES6 types, such as
Map
andSet
. - Support for GEO commands (Redis 3.2 Unstable).
- Sophisticated error handling strategy.
$ npm install ioredis
var Redis = require('ioredis');
var redis = new Redis();
redis.set('foo', 'bar');
redis.get('foo', function (err, result) {
console.log(result);
});
// Or using a promise if the last argument isn't a function
redis.get('foo').then(function (result) {
console.log(result);
});
// Arguments to commands are flattened, so the following are the same:
redis.sadd('set', 1, 3, 5, 7);
redis.sadd('set', [1, 3, 5, 7]);
// All arguments are passed directly to the redis server:
redis.set('key', 100, 'EX', 10);
When a new Redis
instance is created,
a connection to Redis will be created at the same time.
You can specify which Redis to connect to by:
new Redis() // Connect to 127.0.0.1:6379
new Redis(6380) // 127.0.0.1:6380
new Redis(6379, '192.168.1.1') // 192.168.1.1:6379
new Redis('/tmp/redis.sock')
new Redis({
port: 6379, // Redis port
host: '127.0.0.1', // Redis host
family: 4, // 4 (IPv4) or 6 (IPv6)
password: 'auth',
db: 0
})
You can also specify connection options as a redis://
URL:
new Redis('redis://:[email protected]:6380/4') // 127.0.0.1:6380, db 4
See API Documentation for all available options.
Here is a simple example of the API for publish/subscribe. The following program opens two client connections. It subscribes to a channel with one connection and publishes to that channel with the other:
var Redis = require('ioredis');
var redis = new Redis();
var pub = new Redis();
redis.subscribe('news', 'music', function (err, count) {
// Now we are subscribed to both the 'news' and 'music' channels.
// `count` represents the number of channels we are currently subscribed to.
pub.publish('news', 'Hello world!');
pub.publish('music', 'Hello again!');
});
redis.on('message', function (channel, message) {
// Receive message Hello world! from channel news
// Receive message Hello again! from channel music
console.log('Receive message %s from channel %s', message, channel);
});
// There's also an event called 'messageBuffer', which is the same as 'message' except
// it returns buffers instead of strings.
redis.on('messageBuffer', function (channel, message) {
// Both `channel` and `message` are buffers.
});
PSUBSCRIBE
is also supported in a similar way:
redis.psubscribe('pat?ern', function (err, count) {});
redis.on('pmessage', function (pattern, channel, message) {});
redis.on('pmessageBuffer', function (pattern, channel, message) {});
When a client issues a SUBSCRIBE or PSUBSCRIBE, that connection is put into a "subscriber" mode. At that point, only commands that modify the subscription set are valid. When the subscription set is empty, the connection is put back into regular mode.
If you need to send regular commands to Redis while in subscriber mode, just open another connection.
Arguments can be buffers:
redis.set('foo', new Buffer('bar'));
And every command has a method that returns a Buffer (by adding a suffix of "Buffer" to the command name). To get a buffer instead of a utf8 string:
redis.getBuffer('foo', function (err, result) {
// result is a buffer.
});
If you want to send a batch of commands (e.g. > 5), you can use pipelining to queue the commands in memory and then send them to Redis all at once. This way the performance improves by 50%~300% (See benchmark section).
redis.pipeline()
creates a Pipeline
instance. You can call any Redis
commands on it just like the Redis
instance. The commands are queued in memory
and flushed to Redis by calling the exec
method:
var pipeline = redis.pipeline();
pipeline.set('foo', 'bar');
pipeline.del('cc');
pipeline.exec(function (err, results) {
// `err` is always null, and `results` is an array of responses
// corresponding to the sequence of queued commands.
// Each response follows the format `[err, result]`.
});
// You can even chain the commands:
redis.pipeline().set('foo', 'bar').del('cc').exec(function (err, results) {
});
// `exec` also returns a Promise:
var promise = redis.pipeline().set('foo', 'bar').get('foo').exec();
promise.then(function (result) {
// result === [[null, 'OK'], [null, 'bar']]
});
Each chained command can also have a callback, which will be invoked when the command gets a reply:
redis.pipeline().set('foo', 'bar').get('foo', function (err, result) {
// result === 'bar'
}).exec(function (err, result) {
// result[1][1] === 'bar'
});
In addition to adding commands to the pipeline
queue individually, you can also pass an array of commands and arguments to the constructor:
redis.pipeline([
['set', 'foo', 'bar'],
['get', 'foo']
]).exec(function () { /* ... */ });
Most of the time, the transaction commands multi
& exec
are used together with pipeline.
Therefore, when multi
is called, a Pipeline
instance is created automatically by default,
so you can use multi
just like pipeline
:
redis.multi().set('foo', 'bar').get('foo').exec(function (err, results) {
// results === [[null, 'OK'], [null, 'bar']]
});
If there's a syntax error in the transaction's command chain (e.g. wrong number of arguments, wrong command name, etc), then none of the commands would be executed, and an error is returned:
redis.multi().set('foo').set('foo', 'new value').exec(function (err, results) {
// err:
// { [ReplyError: EXECABORT Transaction discarded because of previous errors.]
// name: 'ReplyError',
// message: 'EXECABORT Transaction discarded because of previous errors.',
// command: { name: 'exec', args: [] },
// previousErrors:
// [ { [ReplyError: ERR wrong number of arguments for 'set' command]
// name: 'ReplyError',
// message: 'ERR wrong number of arguments for \'set\' command',
// command: [Object] } ] }
});
In terms of the interface, multi
differs from pipeline
in that when specifying a callback
to each chained command, the queueing state is passed to the callback instead of the result of the command:
redis.multi().set('foo', 'bar', function (err, result) {
// result === 'QUEUED'
}).exec(/* ... */);
If you want to use transaction without pipeline, pass { pipeline: false }
to multi
,
and every command will be sent to Redis immediately without waiting for an exec
invocation:
redis.multi({ pipeline: false });
redis.set('foo', 'bar');
redis.get('foo');
redis.exec(function (err, result) {
// result === [[null, 'OK'], [null, 'bar']]
});
The constructor of multi
also accepts a batch of commands:
redis.multi([
['set', 'foo', 'bar'],
['get', 'foo']
]).exec(function () { /* ... */ });
Inline transactions are supported by pipeline, which means you can group a subset of commands in the pipeline into a transaction:
redis.pipeline().get('foo').multi().set('foo', 'bar').get('foo').exec().get('foo').exec();
ioredis supports all of the scripting commands such as EVAL
, EVALSHA
and SCRIPT
.
However, it's tedious to use in real world scenarios since developers have to take
care of script caching and to detect when to use EVAL
and when to use EVALSHA
.
ioredis expose a defineCommand
method to make scripting much easier to use:
var redis = new Redis();
// This will define a command echo:
redis.defineCommand('echo', {
numberOfKeys: 2,
lua: 'return {KEYS[1],KEYS[2],ARGV[1],ARGV[2]}'
});
// Now `echo` can be used just like any other ordinary command,
// and ioredis will try to use `EVALSHA` internally when possible for better performance.
redis.echo('k1', 'k2', 'a1', 'a2', function (err, result) {
// result === ['k1', 'k2', 'a1', 'a2']
});
// `echoBuffer` is also defined automatically to return buffers instead of strings:
redis.echoBuffer('k1', 'k2', 'a1', 'a2', function (err, result) {
// result[0] === new Buffer('k1');
});
// And of course it works with pipeline:
redis.pipeline().set('foo', 'bar').echo('k1', 'k2', 'a1', 'a2').exec();
If the number of keys can't be determined when defining a command, you can
omit the numberOfKeys
property and pass the number of keys as the first argument
when you call the command:
redis.defineCommand('echoDynamicKeyNumber', {
lua: 'return {KEYS[1],KEYS[2],ARGV[1],ARGV[2]}'
});
// Now you have to pass the number of keys as the first argument every time
// you invoke the `echoDynamicKeyNumber` command:
redis.echoDynamicKeyNumber(2, 'k1', 'k2', 'a1', 'a2', function (err, result) {
// result === ['k1', 'k2', 'a1', 'a2']
});
This feature allows you to specify a string that will automatically be prepended to all the keys in a command, which makes it easier to manage your key namespaces.
var fooRedis = new Redis({ keyPrefix: 'foo:' });
fooRedis.set('bar', 'baz'); // Actually sends SET foo:bar baz
fooRedis.defineCommand('echo', {
numberOfKeys: 2,
lua: 'return {KEYS[1],KEYS[2],ARGV[1],ARGV[2]}'
});
// Works well with pipelining/transaction
fooRedis.pipeline()
// Sends SORT foo:list BY foo:weight_*->fieldname
.sort('list', 'BY', 'weight_*->fieldname')
// Supports custom commands
// Sends EVALSHA xxx foo:k1 foo:k2 a1 a2
.echo('k1', 'k2', 'a1', 'a2')
.exec()
Most Redis commands take one or more Strings as arguments,
and replies are sent back as a single String or an Array of Strings. However, sometimes
you may want something different. For instance, it would be more convenient if the HGETALL
command returns a hash (e.g. { key: val1, key2: v2 }
) rather than an array of key values (e.g. [key1, val1, key2, val2]
).
ioredis has a flexible system for transforming arguments and replies. There are two types of transformers, argument transformer and reply transformer:
var Redis = require('ioredis');
// Here's the built-in argument transformer converting
// hmset('key', { k1: 'v1', k2: 'v2' })
// or
// hmset('key', new Map([['k1', 'v1'], ['k2', 'v2']]))
// into
// hmset('key', 'k1', 'v1', 'k2', 'v2')
Redis.Command.setArgumentTransformer('hmset', function (args) {
if (args.length === 2) {
if (typeof Map !== 'undefined' && args[1] instanceof Map) {
// utils is a internal module of ioredis
return [args[0]].concat(utils.convertMapToArray(args[1]));
}
if ( typeof args[1] === 'object' && args[1] !== null) {
return [args[0]].concat(utils.convertObjectToArray(args[1]));
}
}
return args;
});
// Here's the built-in reply transformer converting the HGETALL reply
// ['k1', 'v1', 'k2', 'v2']
// into
// { k1: 'v1', 'k2': 'v2' }
Redis.Command.setReplyTransformer('hgetall', function (result) {
if (Array.isArray(result)) {
var obj = {};
for (var i = 0; i < result.length; i += 2) {
obj[result[i]] = result[i + 1];
}
return obj;
}
return result;
});
There are three built-in transformers, two argument transformers for hmset
& mset
and
a reply transformer for hgetall
. Transformers for hmset
and hgetall
were mentioned
above, and the transformer for mset
is similar to the one for hmset
:
redis.mset({ k1: 'v1', k2: 'v2' });
redis.get('k1', function (err, result) {
// result === 'v1';
});
redis.mset(new Map([['k3', 'v3'], ['k4', 'v4']]));
redis.get('k3', function (err, result) {
// result === 'v3';
});
Redis supports the MONITOR command, which lets you see all commands received by the Redis server across all client connections, including from other client libraries and other computers.
The monitor
method returns a monitor instance.
After you send the MONITOR command, no other commands are valid on that connection. ioredis will emit a monitor event for every new monitor message that comes across.
The callback for the monitor event takes a timestamp from the Redis server and an array of command arguments.
Here is a simple example:
redis.monitor(function (err, monitor) {
monitor.on('monitor', function (time, args) {
});
});
Redis 2.8 added the SCAN
command to incrementally iterate through the keys in the database. It's different from KEYS
in that
SCAN
only returns a small number of elements each call, so it can be used in production without the downside
of blocking the server for a long time. However, it requires recording the cursor on the client side each time
the SCAN
command is called in order to iterate through all the keys correctly. Since it's a relatively common use case, ioredis
provides a streaming interface for the SCAN
command to make things much easier. A readable stream can be created by calling scanStream
:
var redis = new Redis();
// Create a readable stream (object mode)
var stream = redis.scanStream();
var keys = [];
stream.on('data', function (resultKeys) {
// `resultKeys` is an array of strings representing key names
for (var i = 0; i < resultKeys.length; i++) {
keys.push(resultKeys[i]);
}
});
stream.on('end', function () {
console.log('done with the keys: ', keys);
});
scanStream
accepts an option, with which you can specify the MATCH
pattern and the COUNT
argument:
var stream = redis.scanStream({
// only returns keys following the pattern of `user:*`
match: 'user:*',
// returns approximately 100 elements per call
count: 100
});
Just like other commands, scanStream
has a binary version scanBufferStream
, which returns an array of buffers. It's useful when
the key names are not utf8 strings.
There are also hscanStream
, zscanStream
and sscanStream
to iterate through elements in a hash, zset and set. The interface of each is
similar to scanStream
except the first argument is the key name:
var stream = redis.hscanStream('myhash', {
match: 'age:??'
});
You can learn more from the Redis documentation.
By default, ioredis will try to reconnect when the connection to Redis is lost
except when the connection is closed manually by redis.disconnect()
or redis.quit()
.
It's very flexible to control how long to wait to reconnect after disconnection
using the retryStrategy
option:
var redis = new Redis({
// This is the default value of `retryStrategy`
retryStrategy: function (times) {
var delay = Math.min(times * 2, 2000);
return delay;
}
});
retryStrategy
is a function that will be called when the connection is lost.
The argument times
means this is the nth reconnection being made and
the return value represents how long (in ms) to wait to reconnect. When the
return value isn't a number, ioredis will stop trying to reconnect, and the connection
will be lost forever if the user doesn't call redis.connect()
manually.
When reconnected, the client will auto subscribe to channels that the previous connection subscribed to.
This behavior can be disabled by setting the autoResubscribe
option to false
.
And if the previous connection has some unfulfilled commands (most likely blocking commands such as brpop
and blpop
),
the client will resend them when reconnected. This behavior can be disabled by setting the autoResendUnfulfilledCommands
option to false
.
Besides auto-reconnect when the connection is closed, ioredis supports reconnecting on the specified errors by the reconnectOnError
option. Here's an example that will reconnect when receiving READONLY
error:
var redis = new Redis({
reconnectOnError: function (err) {
var targetError = 'READONLY';
if (err.message.slice(0, targetError.length) === targetError) {
// Only reconnect when the error starts with "READONLY"
return true; // or `return 1;`
}
}
});
This feature is useful when using Amazon ElastiCache. Once failover happens, Amazon ElastiCache will switch the master we currently connected with to a slave, leading to the following writes fails with the error READONLY
. Using reconnectOnError
, we can force the connection to reconnect on this error in order to connect to the new master.
Furthermore, if the reconnectOnError
returns 2
, ioredis will resend the failed command after reconnecting.
The Redis instance will emit some events about the state of the connection to the Redis server.
Event | Description |
---|---|
connect | client will emit connect once a connection is established to the Redis server. |
ready | If enableReadyCheck is true , client will emit ready when the server reports that it is ready to receive commands (e.g. finish loading data from disk).Otherwise, ready will be emitted immediately right after the connect event. |
error | client will emit error when an error occurs while connecting.However, ioredis emits all error events silently (only emits when there's at least one listener) so that your application won't crash if you're not listening to the error event. |
close | client will emit close when an established Redis server connection has closed. |
reconnecting | client will emit reconnecting after close when a reconnection will be made. The argument of the event is the time (in ms) before reconnecting. |
end | client will emit end after close when no more reconnections will be made. |
authError | client will emit authError when the password specified in the options is wrong or the server doesn't require a password. |
You can also check out the Redis#status
property to get the current connection status.
When a command can't be processed by Redis (being sent before the ready
event), by default, it's added to the offline queue and will be
executed when it can be processed. You can disable this feature by setting the enableOfflineQueue
option to false
:
var redis = new Redis({ enableOfflineQueue: false });
Redis doesn't support TLS natively, however if the redis server you want to connect to is hosted behind a TLS proxy (e.g. stunnel) or is offered by a PaaS service that supports TLS connection (e.g. Redis Labs), you can set the tls
option:
var redis = new Redis({
host: 'localhost',
tls: {
// Refer to `tls.connect()` section in
// https://nodejs.org/api/tls.html
// for all supported options
ca: fs.readFileSync('cert.pem')
}
});
ioredis supports Sentinel out of the box. It works transparently as all features that work when you connect to a single node also work when you connect to a sentinel group. Make sure to run Redis >= 2.8.12 if you want to use this feature.
To connect using Sentinel, use:
var redis = new Redis({
sentinels: [{ host: 'localhost', port: 26379 }, { host: 'localhost', port: 26380 }],
name: 'mymaster'
});
redis.set('foo', 'bar');
The arguments passed to the constructor are different from the ones you use to connect to a single node, where:
name
identifies a group of Redis instances composed of a master and one or more slaves (mymaster
in the example);sentinels
are a list of sentinels to connect to. The list does not need to enumerate all your sentinel instances, but a few so that if one is down the client will try the next one.
ioredis guarantees that the node you connected to is always a master even after a failover. When a failover happens, instead of trying to reconnect to the failed node (which will be demoted to slave when it's available again), ioredis will ask sentinels for the new master node and connect to it. All commands sent during the failover are queued and will be executed when the new connection is established so that none of the commands will be lost.
It's possible to connect to a slave instead of a master by specifying the option role
with the value of slave
, and ioredis will try to connect to a random slave of the specified master, with the guarantee that the connected node is always a slave. If the current node is promoted to master due to a failover, ioredis will disconnect from it and ask the sentinels for another slave node to connect to.
Besides the retryStrategy
option, there's also a sentinelRetryStrategy
in Sentinel mode which will be invoked when all the sentinel nodes are unreachable during connecting. If sentinelRetryStrategy
returns a valid delay time, ioredis will try to reconnect from scratch. The default value of sentinelRetryStrategy
is:
function (times) {
var delay = Math.min(times * 10, 1000);
return delay;
}
Redis Cluster provides a way to run a Redis installation where data is automatically sharded across multiple Redis nodes. You can connect to a Redis Cluster like this:
var Redis = require('ioredis');
var cluster = new Redis.Cluster([{
port: 6380,
host: '127.0.0.1'
}, {
port: 6381,
host: '127.0.0.1'
}]);
cluster.set('foo', 'bar');
cluster.get('foo', function (err, res) {
// res === 'bar'
});
Cluster
constructor accepts two arguments, where:
-
The first argument is a list of nodes of the cluster you want to connect to. Just like Sentinel, the list does not need to enumerate all your cluster nodes, but a few so that if one is unreachable the client will try the next one, and the client will discover other nodes automatically when at least one node is connnected.
-
The second argument is the option that will be passed to the
Redis
constructor when creating connections to Redis nodes internally. There are some additional options for the Cluster:-
clusterRetryStrategy
: When none of the startup nodes are reachable,clusterRetryStrategy
will be invoked. When a number is returned, ioredis will try to reconnect to the startup nodes from scratch after the specified delay (in ms). Otherwise, an error of "None of startup nodes is available" will be returned. The default value of this option is:function (times) { var delay = Math.min(100 + times * 2, 2000); return delay; }
-
maxRedirections
: When aMOVED
orASK
error is received, the client will redirect the command to another node. This option limits the max redirections allowed when sending a command. The default value is16
. -
retryDelayOnFailover
: If the error of "Connection is closed." is received when sending a command, ioredis will retry after the specified delay. The default value is2000
. You should make sureretryDelayOnFailover * maxRedirections > cluster-node-timeout
to insure that no command will fail during a failover. -
retryDelayOnClusterDown
: When a cluster is down, all commands will be rejected with the error ofCLUSTERDOWN
. If this option is a number (by default, it is 1000), the client will resend the commands after the specified time (in ms).
-
Almost all features that are supported by Redis
are also supported by Redis.Cluster
, e.g. custom commands, transaction and pipeline.
However there are some differences when using transaction and pipeline in Cluster mode:
- All keys in a pipeline should belong to the same slot since ioredis sends all commands in a pipeline to the same node.
- You can't use
multi
without pipeline (akacluster.multi({ pipeline: false })
). This is because when you callcluster.multi({ pipeline: false })
, ioredis doesn't know which node themulti
command should be sent to. - Chaining custom commands in the pipeline is not supported in Cluster mode.
When any commands in a pipeline receives a MOVED
or ASK
error, ioredis will resend the whole pipeline to the specified node automatically if all of the following conditions are satisfied:
- All errors received in the pipeline are the same. For example, we won't resend the pipeline if we got two
MOVED
errors pointing to different nodes. - All commands executed successfully are readonly commands. This makes sure that resending the pipeline won't have side effects.
Pub/Sub in cluster mode works exactly as the same as in standalone mode. Internally, when a node of the cluster receives a message, it will broadcast the message to the other nodes. ioredis makes sure that each message will only be received once by strictly subscribing one node at the same time.
var nodes = [/* nodes */];
var pub = new Redis.Cluster(nodes);
var sub = new Redis.Cluster(nodes);
sub.on('message', function (channel, message) {
console.log(channel, message);
});
sub.subscribe('news', function () {
pub.publish('news', 'highlights');
});
If an error occurs when connecting to the node, the node error
event will be emitted. Furthermore, if all nodes aren't reachable,
the error
event will be emitted silently (only emitting if there's at least one listener) with a property of lastNodeError
representing
the last node error received.
Normally, commands are only sent to the masters since slaves can't process write queries.
However, you can use the readOnly
option to use slaves in order to scale reads:
var Redis = require('ioredis');
var cluster = new Redis.Cluster(nodes, { readOnly: true });
If hiredis is installed (by npm install hiredis
),
ioredis will use it by default. Otherwise, a pure JavaScript parser will be used.
Typically, there's not much difference between them in terms of performance.
All the errors returned by the Redis server are instances of ReplyError
, which can be accessed via Redis
:
var Redis = require('ioredis');
var redis = new Redis();
// This command causes a reply error since the SET command requires two arguments.
redis.set('foo', function (err) {
err instanceof Redis.ReplyError
});
When a reply error is not handled (no callback is specified, and no catch
method is chained),
the error will be logged to stderr. For instance:
var Redis = require('ioredis');
var redis = new Redis();
redis.set('foo');
The following error will be printed:
Unhandled rejection ReplyError: ERR wrong number of arguments for 'set' command
at ReplyParser._parseResult (/app/node_modules/ioredis/lib/parsers/javascript.js:60:14)
at ReplyParser.execute (/app/node_modules/ioredis/lib/parsers/javascript.js:178:20)
at Socket.<anonymous> (/app/node_modules/ioredis/lib/redis/event_handler.js:99:22)
at Socket.emit (events.js:97:17)
at readableAddChunk (_stream_readable.js:143:16)
at Socket.Readable.push (_stream_readable.js:106:10)
at TCP.onread (net.js:509:20)
But the error stack doesn't make any sense because the whole stack happens in the ioredis
module itself, not in your code. So it's not easy to find out where the error happens in your code.
ioredis provides an option showFriendlyErrorStack
to solve the problem. When you enable
showFriendlyErrorStack
, ioredis will optimize the error stack for you:
var Redis = require('ioredis');
var redis = new Redis({ showFriendlyErrorStack: true });
redis.set('foo');
And the output will be:
Unhandled rejection ReplyError: ERR wrong number of arguments for 'set' command
at Object.<anonymous> (/app/index.js:3:7)
at Module._compile (module.js:446:26)
at Object.Module._extensions..js (module.js:464:10)
at Module.load (module.js:341:32)
at Function.Module._load (module.js:296:12)
at Function.Module.runMain (module.js:487:10)
at startup (node.js:111:16)
at node.js:799:3
This time the stack tells you that the error happens on the third line in your code. Pretty sweet! However, it would decrease the performance significantly to optimize the error stack. So by default, this option is disabled and can only be used for debugging purposes. You shouldn't use this feature in a production environment.
If you want to catch all unhandled errors without decreased performance, there's another way:
var Redis = require('ioredis');
Redis.Promise.onPossiblyUnhandledRejection(function (error) {
// you can log the error here.
// error.command.name is the command name, here is 'set'
// error.command.args is the command arguments, here is ['foo']
});
var redis = new Redis();
redis.set('foo');
Comparisons with node_redis on my iMac (Retina 5K, 27-inch, Late 2014). Both of them are using pure JavaScript parser(without hiredis module):
> npm run bench
==========================
ioredis: 1.7.2
node_redis: 0.12.1
CPU: 4
OS: darwin x64
==========================
simple set
157,343 op/s » ioredis
92,132 op/s » node_redis
simple get
156,274 op/s » ioredis
92,040 op/s » node_redis
simple get with pipeline
13,501 op/s » ioredis
10,016 op/s » node_redis
lrange 100
113,696 op/s » ioredis
83,960 op/s » node_redis
publish
156,110 op/s » ioredis
86,303 op/s » node_redis
subscribe
85,030 op/s » ioredis
75,651 op/s » node_redis
Suites: 6
Benches: 12
Elapsed: 90,547.08 ms
However, since there are many factors that can impact the benchmark, results may be different on your server (#25).
You can find the code at benchmarks/*.js
and run it yourself using npm run bench
.
Start a Redis server on 127.0.0.1:6379, and then:
$ npm test
FLUSH ALL
will be invoked after each test, so make sure there's no valuable data in it before running tests.
You can set the DEBUG
env to ioredis:*
to print debug info:
$ DEBUG=ioredis:* node app.js
Originally, we used the Redis client node_redis, but over a period of time we found that it's not robust enough for us to use in our production environment. The library has some non-trivial bugs and many unresolved issues on GitHub (165 so far). For instance:
var redis = require('redis');
var client = redis.createClient();
client.set('foo', 'message');
client.set('bar', 'Hello world');
client.mget('foo', 'bar');
client.subscribe('channel');
client.on('message', function (msg) {
// Will print "Hello world", although no `publish` is invoked.
console.log('received ', msg);
});
I submitted some pull requests, but sadly, none of them have been merged, so here's ioredis.
I'm happy to receive bug reports, fixes, documentation enhancements, and any other improvements.
And since I'm not a native English speaker, if you find any grammar mistakes in the documentation, please also let me know. :)
- Connection Pool & Read Write Splitting
The JavaScript and hiredis parsers are modified from node_redis (MIT License, Copyright (c) 2010 Matthew Ranney, http://ranney.com/).
MIT