Skip to content

Commit

Permalink
Merge e66a296 into a956d94
Browse files Browse the repository at this point in the history
  • Loading branch information
emmanuellujan authored Sep 20, 2023
2 parents a956d94 + e66a296 commit 990b254
Show file tree
Hide file tree
Showing 6 changed files with 326 additions and 3 deletions.
1 change: 1 addition & 0 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@ version = "0.2.0"

[deps]
AtomsBase = "a963bdd2-2df7-4f54-a1ee-49d51e6be12a"
Clustering = "aaaa29a8-35af-508c-8bc3-b662a17a0fe5"
Determinantal = "2673d5e8-682c-11e9-2dfd-471b09c6c819"
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
Flux = "587475ba-b771-5e3f-ad9e-33799f191a9c"
Expand Down
8 changes: 8 additions & 0 deletions src/Data/datatypes.jl
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,14 @@ Abstract type declaring the type of information that is unique to a particular a
abstract type AtomicData <: Data end

CFG_TYPE = Union{AtomsBase.FlexibleSystem,ConfigurationData}

"""
get_values(v::SVector)
Removes units from a position.
"""
get_values(v::SVector) = [v.data[1].val, v.data[2].val, v.data[3].val]

"""
Energy <: ConfigurationData
d :: Real
Expand Down
172 changes: 172 additions & 0 deletions src/SubsetSelection/dbscan.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,172 @@
using Clustering

include("kabsch.jl")

"""
struct DBSCANSelector <: SubsetSelector
clusters
eps
minpts
sample_size
end
Definition of the type DBSCANSelector, a subselector based on the clustering method DBSCAN.
"""
struct DBSCANSelector <: SubsetSelector
clusters
eps
minpts
sample_size
end

"""
function DBSCANSelector(
ds::DataSet,
eps,
minpts,
sample_size
)
Constructor of DBSCANSelector based on the atomic configurations in `ds`, the DBSCAN params `eps` and `minpts`, and the sample size `sample_size`.
"""
function DBSCANSelector(
ds::DataSet,
eps,
minpts,
sample_size
)
return DBSCANSelector(get_clusters(ds, eps, minpts), eps, minpts, sample_size)
end

"""
function get_random_subset(
s::DBSCANSelector,
batch_size = s.sample_size
)
Returns a random subset of indexes composed of samples of size `batch_size ÷ length(s.clusters)` from each cluster in `s`.
"""
function get_random_subset(
s::DBSCANSelector,
batch_size = s.sample_size
)
inds = reduce(vcat, sample.(s.clusters, [batch_size ÷ length(s.clusters)]))
return inds
end

"""
function sample(
c,
batch_size
)
Select from cluster `c` a sample of size `batch_size`.
"""
function sample(
c,
batch_size
)
return c[rand(1:length(c), batch_size)]
end

"""
function get_clusters(
ds,
eps,
minpts
)
Computes clusters from the configurations in `ds` using DBSCAN with parameters `eps` and `minpts`.
"""
function get_clusters(
ds,
eps,
minpts
)
# Create distance matrix
if any(boundary_conditions(get_system(ds[1])) .== [Periodic()])
d = Symmetric(distance_matrix_periodic(ds))
else
d = Symmetric(distance_matrix_kabsch(ds))
end
# Create clusters using dbscan
c = dbscan(d, eps, minpts)
a = c.assignments # get the assignments of points to clusters
n_clusters = maximum(a)
clusters = [findall(x->x==i, a) for i in 1:n_clusters]
return clusters
end

"""
function periodic_rmsd(
p1::Array{Float64,2},
p2::Array{Float64,2},
box_lengths::Array{Float64,1}
)
Calculates the RMSD between atom positions of two configurations taking into account the periodic boundaries.
"""
function periodic_rmsd(
p1::Array{Float64,2},
p2::Array{Float64,2},
box_lengths::Array{Float64,1}
)
n_atoms = size(p1, 1)
sum_sqr_dist = 0.0
for i in 1:n_atoms
d = p1[i, :] - p2[i, :]
# If d is larger than half the box length subtract box length
d = d .- round.(d ./ box_lengths) .* box_lengths
sum_sqr_dist += norm(d)^2
end
return sqrt(sum_sqr_dist/n_atoms)
end

"""
function distance_matrix_periodic(
ds::DataSet
)
Calculates a matrix of distances between atomic configurations taking into account the periodic boundaries.
"""
function distance_matrix_periodic(ds::DataSet)
n = length(ds); d = zeros(n, n)
box = bounding_box(get_system(ds[1]))
box_lengths = [get_values(box[i])[i] for i in 1:3]
for i in 1:n
if bounding_box(get_system(ds[i])) != box
error("Periodic box must be the same for all configurations.")
end
pi = Matrix(hcat(get_values.(get_positions(ds[i]))...)')
Threads.@threads for j in i+1:n
pj = Matrix(hcat(get_values.(get_positions(ds[j]))...)')
d[i,j] = periodic_rmsd(pi, pj, box_lengths)
d[j,i] = d[i,j]
end
end
return d
end

"""
function distance_matrix_kabsch(
ds::DataSet
)
Calculate a matrix of distances between atomic configurations using KABSCH method.
"""
function distance_matrix_kabsch(
ds::DataSet
)
n = length(ds); d = zeros(n, n)
for i in 1:n
p1 = Matrix(hcat(get_values.(get_positions(ds[i]))...)')
Threads.@threads for j in i+1:n
p2 = Matrix(hcat(get_values.(get_positions(ds[j]))...)')
d[i,j] = kabsch_rmsd(p1, p2)
d[j,i] = d[i,j]
end
end
return d
end


125 changes: 125 additions & 0 deletions src/SubsetSelection/kabsch.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,125 @@
"""
The following source code is based on BiomolecularStructures.jl.
See https://github.com/hng/BiomolecularStructures.jl/blob/a8c8970f2cbbdf4ec05bd1245a61e3ddab2a6380/src/KABSCH/kabsch.jl
The MIT License (MIT)
Copyright (c) [2015] [Simon Malischewski Henning Schumann]
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""

"""
function rmsd(
A::Array{Float64,2},
B::Array{Float64,2}
)
Calculate root mean square deviation of two matrices A, B.
See http://en.wikipedia.org/wiki/Root-mean-square_deviation_of_atomic_positions
"""
function rmsd(
A::Array{Float64,2},
B::Array{Float64,2}
)

RMSD::Float64 = 0.0

# D pairs of equivalent atoms
D::Int = size(A)[1]::Int # <- oddly _only_ changing this to Int makes it work on 32-bit systems.
# N coordinates
N::Int = length(A)::Int

for i::Int64 = 1:N
RMSD += (A[i]::Float64 - B[i]::Float64)^2
end
return sqrt(RMSD / D)
end

"""
function calc_centroid(
m::Array{Float64,2}
)
Calculate a centroid of a matrix.
"""
function calc_centroid(
m::Array{Float64,2}
)

sum_m::Array{Float64,2} = sum(m, dims=1)
size_m::Int64 = size(m)[1]

return map(x -> x/size_m, sum_m)
end

"""
function translate_points(
P::Array{Float64,2},
Q::Array{Float64,2}
)
Translate P, Q so centroids are equal to the origin of the coordinate system
Translation der Massenzentren, so dass beide Zentren im Ursprung des Koordinatensystems liegen
"""
function translate_points(
P::Array{Float64,2},
Q::Array{Float64,2}
)
# Calculate centroids P, Q
# Die Massenzentren der Proteine
centroid_p::Array{Float64,2} = calc_centroid(P)
centroid_q::Array{Float64,2} = calc_centroid(Q)

P = broadcast(-,P, centroid_p)

Q = broadcast(-,Q, centroid_q)

return P, Q, centroid_p, centroid_q
end

"""
function kabsch(
reference::Array{Float64,2},
coords::Array{Float64,2}
)
Input: two sets of points: reference, coords as Nx3 Matrices (so)
Returns optimally rotated matrix
"""
function kabsch(
reference::Array{Float64,2},
coords::Array{Float64,2}
)

centered_reference::Array{Float64,2}, centered_coords::Array{Float64,2}, centroid_p::Array{Float64,2}, centroid_q::Array{Float64,2} = translate_points(reference, coords)
# Compute covariance matrix A
A::Array{Float64,2} = *(centered_coords', centered_reference)

# Calculate Singular Value Decomposition (SVD) of A
u::Array{Float64,2}, d::Array{Float64,1}, vt::Array{Float64,2} = svd(A)

# check for reflection
f::Int64 = sign(det(vt) * det(u))
m::Array{Int64,2} = [1 0 0; 0 1 0; 0 0 f]

# Calculate the optimal rotation matrix _and_ superimpose it
return broadcast(+, *(centered_coords, u, m, vt'), centroid_p)

end

"""
function kabsch_rmsd(
P::Array{Float64,2},
Q::Array{Float64,2}
)
Directly return RMSD for matrices P, Q for convenience.
"""
function kabsch_rmsd(
P::Array{Float64,2},
Q::Array{Float64,2}
)
return rmsd(P,kabsch(P,Q))
end
5 changes: 4 additions & 1 deletion src/SubsetSelection/subsetselector.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,9 @@ abstract type SubsetSelector end

include("dpp.jl")
include("random.jl")
include("dbscan.jl")
# include("hdbscan.jl")
export SubsetSelector, kDPP, get_random_subset, get_dpp_mode, get_inclusion_prob
export SubsetSelector, get_random_subset
export kDPP, get_dpp_mode, get_inclusion_prob
export DBSCANSelector
export RandomSelector
18 changes: 16 additions & 2 deletions test/subset_selector/subset_selector_tests.jl
Original file line number Diff line number Diff line change
@@ -1,24 +1,38 @@
using AtomsBase
using Unitful, UnitfulAtomic
using LinearAlgebra
# initialize some fake descriptors

# Initialize some fake descriptors
d = 8
num_atoms = 20
num_configs = 10
batch_size = 2
ld = [[randn(d) for i = 1:num_atoms] for j = 1:num_configs]
ld = LocalDescriptors.(ld)
ds = DataSet(Configuration.(ld))

gm = GlobalMean()
dp = DotProduct()

# kDPP tests
dpp = kDPP(ds, gm, dp; batch_size = batch_size)
@test typeof(dpp) <: SubsetSelector
@test typeof(get_random_subset(dpp)) <: Vector{<:Int}
@test typeof(get_dpp_mode(dpp)) <: Vector{<:Int}
@test typeof(get_inclusion_prob(dpp)) <: Vector{Float64}

# RandomSelector tests
r = RandomSelector(num_configs; batch_size = batch_size)
@test typeof(r) <: SubsetSelector
@test typeof(get_random_subset(r)) <: Vector{<:Int}

# DBSCANSelector tests
energy_units = u"eV"
distance_units = u""
ds = load_data("../examples/Si-3Body-LAMMPS/data.xyz", ExtXYZ(energy_units, distance_units));
epsi, minpts, sample_size = 0.05, 5, batch_size
dbscans = DBSCANSelector( ds,
epsi,
minpts,
sample_size)
@test typeof(dbscans) <: SubsetSelector
@test typeof(get_random_subset(dbscans)) <: Vector{<:Int}

0 comments on commit 990b254

Please sign in to comment.