-
Notifications
You must be signed in to change notification settings - Fork 10
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Improvements in hyperparameter optimization
- Loading branch information
1 parent
d525197
commit 6e375be
Showing
2 changed files
with
117 additions
and
109 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,96 @@ | ||
|
||
# Estimate force calculation time | ||
function estimate_time(confs, iap; batch_size = 50) | ||
if length(confs) < batch_size | ||
batch_size = length(confs) | ||
end | ||
random_selector = RandomSelector(length(confs), batch_size) | ||
inds = PotentialLearning.get_random_subset(random_selector) | ||
time = @elapsed begin | ||
f_descr = compute_force_descriptors(confs[inds], | ||
iap.basis, | ||
pbar = false) | ||
ds = DataSet(confs[inds] .+ f_descr) | ||
f_pred = get_all_forces(ds, iap) | ||
end | ||
n_atoms = sum(length(get_system(c)) for c in confs[inds]) | ||
return time / n_atoms | ||
end | ||
|
||
# Get results from the hyperoptimizer | ||
function get_results(ho) | ||
column_names = string.(vcat(keys(ho.results[1][2])..., ho.params...)) | ||
rows = [[values(r[2])..., p...] for (r, p) in zip(ho.results, ho.history)] | ||
results = DataFrame([Any[] for _ in 1:length(column_names)], column_names) | ||
[push!(results, r) for r in rows] | ||
return sort!(results) | ||
end | ||
|
||
# Plot fitting error vs force time (Pareto front) | ||
function plot_err_time(ho) | ||
error = [r[2][:error] for r in ho.results] | ||
times = [r[2][:time_us] for r in ho.results] | ||
scatter(times, | ||
error, | ||
label = "", | ||
xaxis = "Time per force per atom | µs", | ||
yaxis = "we MSE(E, E') + wf MSE(F, F')") | ||
end | ||
|
||
function hyper_loss(p) | ||
err, e_mae, f_mae, time_us = p[1], p[2], p[3], p[4] | ||
e_mae_max, f_mae_max = 0.05, 0.05 | ||
if e_mae < e_mae_max && f_mae < f_mae_max | ||
loss = time_us | ||
else | ||
loss = time_us + err * 10^3 | ||
end | ||
return loss | ||
end | ||
|
||
# hyperlearn! | ||
function hyperlearn!(n_samples, model, pars, conf_train; | ||
ws = [1.0, 1.0], int = true, loss = hyper_loss) | ||
|
||
s = "ho = Hyperoptimizer($n_samples," * join("$k = $v, " for (k, v) in pars) * ")" | ||
eval(Meta.parse(s)) | ||
for (i, state...) in ho | ||
basis = model(; state...) | ||
iap = LBasisPotential(basis) | ||
## Compute energy and force descriptors | ||
e_descr_new = compute_local_descriptors(conf_train, iap.basis, pbar = false) | ||
f_descr_new = compute_force_descriptors(conf_train, iap.basis, pbar = false) | ||
ds_cur = DataSet(conf_train .+ e_descr_new .+ f_descr_new) | ||
## Learn | ||
learn!(iap, ds_cur, ws, int) | ||
## Get true and predicted values | ||
e, e_pred = get_all_energies(ds_cur), get_all_energies(ds_cur, iap) | ||
f, f_pred = get_all_forces(ds_cur), get_all_forces(ds_cur, iap) | ||
## Compute metrics | ||
e_mae, e_rmse, e_rsq = calc_metrics(e_pred, e) | ||
f_mae, f_rmse, f_rsq = calc_metrics(f_pred, f) | ||
time_us = estimate_time(conf_train, iap) * 10^6 | ||
err = ws[1] * e_rmse^2 + ws[2] * f_rmse^2 | ||
metrics = OrderedDict( :e_mae => e_mae, | ||
:e_rmse => e_rmse, | ||
:e_rsq => e_rsq, | ||
:f_mae => f_mae, | ||
:f_rmse => f_rmse, | ||
:f_rsq => f_rsq, | ||
:time_us => time_us) | ||
## Compute multi-objetive loss based on error and time | ||
l = loss([err, e_mae, f_mae, time_us]) | ||
## Print results | ||
print("E_MAE:$(round(e_mae; digits=3)), ") | ||
print("F_MAE:$(round(f_mae; digits=3)), ") | ||
println("Time per force per atom | µs:$(round(time_us; digits=3))") | ||
flush(stdout) | ||
## Return loss | ||
push!(ho.history, [v for v in state]) | ||
push!(ho.results, (l, metrics, iap)) | ||
end | ||
iap = ho.minimum[3] | ||
res = get_results(ho) | ||
return iap, res | ||
end | ||
|