Skip to content

Commit

Permalink
Merge branch 'master' into torchfx_dynamic_shapes_split_slice_support
Browse files Browse the repository at this point in the history
  • Loading branch information
cavusmustafa authored Jul 8, 2024
2 parents 99d1fcd + a71137d commit 01b5bf3
Show file tree
Hide file tree
Showing 63 changed files with 1,761 additions and 881 deletions.
Original file line number Diff line number Diff line change
@@ -1,8 +1,5 @@
.. {#openvino_supported_devices}
Inference Device Support
========================
Supported Inference Devices
============================

.. meta::
:description: Check the list of devices used by OpenVINO to run inference
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -10,22 +10,6 @@ HuggingFace). This list is not comprehensive and only includes models tested by
.. raw:: html

<link rel="stylesheet" type="text/css" href="../../_static/css/openVinoDataTables.css">
<label>hide/reveal additional columns:</label><br/>
<label class="column-container">
CPU
<input type="checkbox" id="AI PC CPU" name="AI PC CPU" value="AI PC CPU" data-column="3" class="toggle-vis"/>
<label for="AI PC CPU" class="checkmark"></label>
</label>
<label class="column-container">
GPU
<input type="checkbox" id="AI PC GPU" name="AI PC GPU" value="AI PC GPU" data-column="4" class="toggle-vis"/>
<label for="AI PC GPU" class="checkmark"></label>
</label>
<label class="column-container">
NPU
<input type="checkbox" id="AI PC NPU" name="AI PC NPU" value="AI PC NPU" data-column="5" class="toggle-vis"/>
<label for="AI PC NPU" class="checkmark"></label>
</label>


.. csv-table::
Expand Down
2 changes: 1 addition & 1 deletion docs/articles_en/about-openvino/performance-benchmarks.rst
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ Performance Benchmarks

This page presents benchmark results for
`Intel® Distribution of OpenVINO™ toolkit <https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html>`__
and :doc:`OpenVINO Model Server <../ovms_what_is_openvino_model_server>`, for a representative "./../"
and :doc:`OpenVINO Model Server <../ovms_what_is_openvino_model_server>`, for a representative
selection of public neural networks and Intel® devices. The results may help you decide which
hardware to use in your applications or plan AI workload for the hardware you have already
implemented in your solutions. Click the buttons below to see the chosen benchmark data.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -7,54 +7,11 @@ Intel® Core™ Ultra processor family and AI PCs.
The table below lists the key performance indicators for a selection of Large Language Models,
running on an Intel® Core™ Ultra 7-165H based system, on built-in GPUs.

For complete information on the system config, see:
`Hardware Platforms [PDF] <https://docs.openvino.ai/2024/_static/benchmarks_files/OV-2024.2-platform_list.pdf>`__


.. raw:: html

<label><link rel="stylesheet" type="text/css" href="../../_static/css/openVinoDataTables.css"></label>
<br/><label>hide/reveal additional columns:</label><br/>
<label class="column-container">
Token latency
<input type="checkbox" checked id="1st" name="1st" value="1st" data-column="2" class="toggle-vis"/>
<label for="1st" class="checkmark"></label>
</label>
<label class="column-container">
Memory used
<input type="checkbox" checked id="maxrss" name="maxrss" value="maxrss" data-column="3" class="toggle-vis"/>
<label for="maxrss" class="checkmark"></label>
</label>
<label class="column-container">
Input tokens
<input type="checkbox" checked id="input" name="input" value="input" data-column="4" class="toggle-vis"/>
<label for="input" class="checkmark"></label>
</label>
<label class="column-container">
Output tokens
<input type="checkbox" checked id="output" name="output" value="output" data-column="5" class="toggle-vis"/>
<label for="output" class="checkmark"></label>
</label>
<label class="column-container">
Model precision
<input type="checkbox" checked id="precision" name="precision" value="precision" data-column="6" class="toggle-vis"/>
<label for="precision" class="checkmark"></label>
</label>
<label class="column-container">
Beam
<input type="checkbox" checked id="beam" name="beam" value="beam" data-column="7" class="toggle-vis"/>
<label for="beam" class="checkmark"></label>
</label>
<label class="column-container">
Batch size
<input type="checkbox" checked id="batch" name="batch" value="batch" data-column="8" class="toggle-vis"/>
<label for="batch" class="checkmark"></label>
</label>
<label class="column-container">
Framework
<input type="checkbox" checked id="framework" name="framework" value="framework" data-column="9" class="toggle-vis"/>
<label for="framework" class="checkmark"></label>
</label>


.. csv-table::
Expand All @@ -64,8 +21,4 @@ For complete information on the system config, see:
:file: ../../_static/download/llm_models.csv


This page is regularly updated to help you identify the best-performing LLMs on the
Intel® Core™ Ultra processor family and AI PCs.

For complete information on the system config, see:
`Hardware Platforms [PDF] <https://docs.openvino.ai/2024/_static/benchmarks_files/OV-2024.2-platform_list.pdf>`__
For complete information on the system config, see: `Hardware Platforms [PDF] <https://docs.openvino.ai/2024/_static/benchmarks_files/OV-2024.2-platform_list.pdf>`__
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,7 @@ CPU

.. tab-item:: Supported Operating Systems

* Ubuntu 24.04 long-term support (LTS), 64-bit (Kernel 6.8+)
* Ubuntu 22.04 long-term support (LTS), 64-bit (Kernel 5.15+)
* Ubuntu 20.04 long-term support (LTS), 64-bit (Kernel 5.15+)
* Ubuntu 18.04 long-term support (LTS) with limitations, 64-bit (Kernel 5.4+)
Expand Down Expand Up @@ -59,6 +60,7 @@ GPU

.. tab-item:: Supported Operating Systems

* Ubuntu 24.04 long-term support (LTS), 64-bit
* Ubuntu 22.04 long-term support (LTS), 64-bit
* Ubuntu 20.04 long-term support (LTS), 64-bit
* Windows 10, 64-bit
Expand Down Expand Up @@ -88,6 +90,7 @@ Intel® Neural Processing Unit

.. tab-item:: Operating Systems for NPU

* Ubuntu 24.04 long-term support (LTS), 64-bit
* Ubuntu 22.04 long-term support (LTS), 64-bit
* Windows 11, 64-bit (22H2, 23H2)

Expand All @@ -106,6 +109,7 @@ Operating systems and developer environment

.. tab-item:: Linux OS

* Ubuntu 24.04 with Linux kernel 6.8+
* Ubuntu 22.04 with Linux kernel 5.15+
* Ubuntu 20.04 with Linux kernel 5.15+
* Red Hat Enterprise Linux 8 with Linux kernel 5.4
Expand Down
3 changes: 0 additions & 3 deletions docs/articles_en/assets/images/quantized_convolution.png

This file was deleted.

3 changes: 0 additions & 3 deletions docs/articles_en/assets/images/quantized_model_example.png

This file was deleted.

Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,6 @@ Quantized models compute and restrictions
:maxdepth: 1
:hidden:

quantized-models/low-precision-model-representation

.. meta::
:description: Learn about the support for quantized models with different
Expand All @@ -16,8 +15,7 @@ Quantized models compute and restrictions

One of the feature of OpenVINO is the support of quantized models with different precisions: INT8, INT4, etc.
However, it is up to the plugin to define what exact precisions are supported by the particular HW.
All quantized models which can be expressed in IR have a unified representation by means of *FakeQuantize* operation.
For more details about low-precision model representation please refer to this :doc:`document <quantized-models/low-precision-model-representation>`.


Interpreting FakeQuantize at runtime
####################################
Expand Down

This file was deleted.

2 changes: 1 addition & 1 deletion docs/articles_en/get-started/install-openvino.rst
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,7 @@ All currently supported versions are:
NPU V\* V\* V\ * n/a n/a n/a n/a V\*
=============== ========== ====== =============== ======== ============ ========== ========== ==========

| \* **Of the Linux systems, version 22.04 includes drivers for NPU.**
| \* **Of the Linux systems, versions 22.04 and 24.04 include drivers for NPU.**
| **For Windows, CPU inference on ARM64 is not supported.**
.. dropdown:: Effortless GenAI integration with OpenVINO GenAI Flavor
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -71,6 +71,48 @@ need to install additional components. Check the description below, as well as t
:doc:`list of additional configurations <../configurations>`
to see if your case needs any of them.

Installing specific components of OpenVINO from Conda Forge
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

You do not have to install the entire OpenVINO package. You can install selected
components by using:

.. code-block:: sh
conda install conda-forge::<component_name>
``<component_name>`` may be one of the components of OpenVINO listed below:

- ``libopenvino-auto-batch-plugin``
- ``libopenvino-auto-plugin``
- ``libopenvino-hetero-plugin``
- ``libopenvino-intel-cpu-plugin``
- ``libopenvino-intel-gpu-plugin``
- ``libopenvino-intel-npu-plugin``
- ``libopenvino-ir-frontend``
- ``libopenvino-onnx-frontend``
- ``libopenvino-paddle-frontend``
- ``libopenvino-pytorch-frontend``
- ``libopenvino-tensorflow-frontend``
- ``libopenvino-tensorflow-lite-frontend``
- ``libopenvino-dev``
- ``libopenvino-python``
- ``libopenvino-arm-cpu-plugin``


For example, to install a single component, use:

.. code-block:: sh
conda install conda-forge::libopenvino-intel-cpu-plugin
For multiple components, use:

.. code-block:: sh
conda install conda-forge::libopenvino-intel-cpu-plugin conda-forge::libopenvino-arm-cpu-plugin conda-forge::libopenvino-intel-npu-plugin conda-forge::libopenvino-intel-gpu-plugin
Compiling with OpenVINO Runtime from Conda-Forge on Linux
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Expand Down Expand Up @@ -110,13 +152,19 @@ OpenCL™ Driver is included with the Intel® Graphics Driver package.
Uninstalling OpenVINO™ Runtime
###########################################################

Once OpenVINO Runtime is installed via Conda, you can remove it using the following command,
Once OpenVINO Runtime is installed via Conda, you can remove it, using the following command,
with the proper OpenVINO version number:

.. code-block:: sh
conda remove openvino=2024.2.0
If you have installed specific components of OpenVINO, you can remove them, using:

.. code-block:: sh
conda remove conda-forge::<component_name>
What's Next?
############################################################

Expand Down
14 changes: 6 additions & 8 deletions docs/articles_en/openvino-workflow/model-preparation.rst
Original file line number Diff line number Diff line change
@@ -1,5 +1,3 @@
.. {#openvino_docs_model_processing_introduction}
Model Preparation
=================

Expand Down Expand Up @@ -66,15 +64,15 @@ The easiest way to obtain a model is to download it from an online database, suc
For PyTorch models, `Python API <#convert-a-model-with-python-convert-model>`__ is the only
conversion option.

Model States
Different model representations
##############################################

There are three states a model in OpenVINO can be: saved on disk, loaded but not compiled
(``ov.Model``) or loaded and compiled (``ov.CompiledModel``).
A model in OpenVINO can be represented in three ways: saved on disk, loaded but not compiled
(``ov.Model``), and loaded and compiled (``ov.CompiledModel``).

| **Saved on disk**
| A model in this state consists of one or more files that fully represent the neural
network. A model can be stored in different ways. For example:
| One or more files saved on a drive, fully representing the neural network.
Different model formats are stored in different ways, for example:
| OpenVINO IR: pair of .xml and .bin files
| ONNX: .onnx file
| TensorFlow: directory with a .pb file and two subfolders or just a .pb file
Expand All @@ -88,7 +86,7 @@ There are three states a model in OpenVINO can be: saved on disk, loaded but not
applying quantization or even adding preprocessing steps before compiling the model.
| **Loaded and compiled**
| This state is achieved when one or more devices are specified for a model object to
| This representation is achieved when one or more devices are specified for a model object to
run on (``ov.CompiledModel``), allowing device optimizations to be made and enabling
inference.
Expand Down
Loading

0 comments on commit 01b5bf3

Please sign in to comment.