from mliv.dataset.demand import gen_data
from mliv.utils import CausalDataset
gen_data()
data = CausalDataset('./Data/Demand/0.5_1.0_0.0_10000/1/')
from mliv.inference import Vanilla2SLS
from mliv.inference import Poly2SLS
from mliv.inference import NN2SLS
from mliv.inference import OneSIV
from mliv.inference import KernelIV
from mliv.inference import DualIV
from mliv.inference import DFL
from mliv.inference import AGMM
from mliv.inference import DeepGMM
from mliv.inference import DFIV
from mliv.inference import DeepIV # Tensorflow & keras
for mod in [OneSIV,KernelIV,DualIV,DFL,AGMM,DeepGMM,DFIV,Vanilla2SLS,Poly2SLS,NN2SLS]:
model = mod()
model.config['num'] = 100
model.config['epochs'] = 10
model.fit(data)
print(mod)
try:
model = DeepIV()
model.config['num'] = 100
model.config['epochs'] = 10
model.fit(data)
print(mod)
except:
print(f'Error: {mod} is implemented by Tensorflow.')
-
Notifications
You must be signed in to change notification settings - Fork 4
License
causal-machine-learning-lab/mliv
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
About
No description, website, or topics provided.
Resources
License
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published