-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
97d63f2
commit 57b2b07
Showing
1 changed file
with
90 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,3 +1,90 @@ | ||
# Parameters | ||
It will include the documentation of the implementation related to `params`. | ||
It also will cover the parameter derivation. | ||
# Parameter Setup | ||
|
||
## Overview | ||
|
||
## Parameter generation protocol | ||
Recall the telescope parameters: | ||
- $n_p: ~~$ Total number of elements available to the prover. | ||
- $n_f: ~~$ The lower bound to prove on prover set. | ||
- $\lambda_{sec}: ~~$ The probability that an adversary, who knows at most $n_f$ elements, can construct a valid proof. | ||
- $\lambda_{rel}: ~~$ The probability that an honest prover, with knowledge of a sufficiently large set $S_p$, can successfully generate a valid proof. | ||
|
||
### Parameters | ||
- $u: ~~$ | ||
- $d: ~~$ | ||
- $q: ~~$ | ||
- $r: ~~$ | ||
- $b: ~~$ | ||
|
||
### Initialization | ||
1. Set the proof size $u$: | ||
$$ | ||
u \coloneqq \left\lceil \frac{\lambda_{\text{sec}} + \log \lambda_{\text{rel}} + 5 - \log \log e}{\log \left(\frac{n_p}{n_f}\right)} \right\rceil | ||
$$ | ||
$$ | ||
2. Set the check values $s_1$ and $s_2$: | ||
$$ | ||
ratio \coloneqq \frac{9 n_p \log e}{17u^2} | ||
$$ | ||
$$ | ||
s_1 \coloneqq ratio - 7, \quad s_2 \coloneqq ratio - 2. | ||
$$ | ||
3. Set the values of $\lambda_{rel}^{(1)}$ and $\lambda_{rel}^{(2)}$: | ||
If $s_1 < 1 \implies \lambda_{rel}^{(1)} \coloneqq \bot$, else $\implies \lambda_{rel}^{(1)} \coloneqq \mathsf{min}(\lambda_{rel}, s_1)$ | ||
If $s_2 < 1 \implies \lambda_{rel}^{(2)} \coloneqq \bot$, else $\implies \lambda_{rel}^{(2)} \coloneqq \mathsf{min}(\lambda_{rel}, s_2)$ | ||
### Cases | ||
#### Small case | ||
If ($s_1 < 1$ or $s_2 < 1$) $\implies$ SMALL CASE, $\quad n_p \leq \lambda^2$. | ||
$$ | ||
r \coloneqq \lambda_{rel}, \quad d \coloneqq \lceil 32\cdot \ln(12)\cdot u \rceil, | ||
$$ | ||
$$ | ||
q \coloneqq \frac{2 \cdot \ln(12)}{d}, \quad b \coloneqq \Big\lfloor \frac{8 \cdot (u + 1) \cdot d}{\ln(12)} \Big\rfloor. | ||
$$ | ||
--- | ||
#### Mid case | ||
If $s_2 > 1$, we know that $\lambda_{rel}^{(2)} \coloneqq min(\lambda_{rel}, s_2)$. | ||
In this case, if ($u > \lambda_{rel}^{(2)}$) $\implies$ MID CASE, $\quad \lambda^3 > n_p > \lambda^2$. | ||
First, we set $\lambda_{rel}^{(1)}$, and compute $\bar{\lambda}$ and $d$: | ||
$$ | ||
\lambda_{rel}^{(1)} \coloneqq min(\lambda_{rel}, s_1 ) | ||
$$ | ||
$$ | ||
\bar{\lambda} \coloneqq \frac{\lambda_{rel}^{(1)} + 7}{\log{e}}, \quad d \coloneqq \lceil 16 \cdot u \cdot \bar{\lambda}\rceil | ||
$$ | ||
Then, we check the prover's set size. | ||
If $n_p \geq \frac{d^2}{9 \cdot \bar{\lambda}}$, we abort the process. | ||
Otherwise, we compute $w$, $r$, $q$, $b$ as follows: | ||
$$ | ||
w \coloneqq \mathsf{compute_w}(u, \lambda_{rel}^{(1)}), \quad r \coloneqq \Big\lceil\frac{\lambda_{rel}}{\lambda_{rel}^{(1)}}\Big\rceil, \quad q \coloneqq \mathsf{recip}\Big(2 \cdot \frac{\bar{\lambda}}{d}\Big) | ||
$$ | ||
$$ | ||
b \coloneqq \Bigg\lfloor\Big(\frac{w \bar{\lambda}}{d} + 1\Big) \cdot \mathsf{exp}\Big(\frac{2 u w \bar{\lambda}}{n_p} + \frac{7 u}{w}\Big)d u + d \Bigg\rfloor | ||
$$ | ||
--- | ||
#### High case | ||
Since $s_2 > 1$ and $\lambda_{rel}^{(2)} \coloneqq min(\lambda_{rel}, s_2)$. | ||
If ($u > \lambda_{rel}^{(2)}$) $\implies$ HIGH CASE, $\quad n_p \geq \lambda^3$. | ||
First, we compute $d$: | ||
$$ | ||
d \coloneqq \Bigg\lceil \frac{16 \cdot u \cdot (\lambda_{rel}^{(2)} + 2)}{\log{e}} \Bigg\rceil. | ||
$$ | ||
Then, we check the prover's set size. | ||
If $n_p \geq \frac{d^2 \cdot \log{e}}{9 \cdot (\lambda_{rel}^{(2)} + 2)}$, we abort the process. | ||
Otherwise, we compute $r$, $q$, $b$ as follows: | ||
$$ | ||
r \coloneqq \Big\lceil \frac{\lambda_{rel}}{\lambda_{rel}^{(2)}} \Big\rceil, \quad q \coloneqq \frac{2 \cdot (\lambda_{rel}^{(2)} + 2)}{d \cdot \log{e}} | ||
$$ | ||
$$ | ||
b \coloneqq \Bigg\lfloor\frac{\lambda_{rel}^{(2)} + 2 + \log{u}} {\lambda_{rel}^{(2)} + 2}\cdot \Big(3 \cdot u \cdot \frac{d}{4}\Big) + d + u\Bigg\rfloor | ||
$$ |