Provides the iradix
package that implements an immutable radix tree.
The package only provides a single Tree
implementation, optimized for sparse nodes.
As a radix tree, it provides the following:
- O(k) operations. In many cases, this can be faster than a hash table since the hash function is an O(k) operation, and hash tables have very poor cache locality.
- Minimum / Maximum value lookups
- Ordered iteration
A tree supports using a transaction to batch multiple updates (insert, delete) in a more efficient manner than performing each operation one at a time.
For a mutable variant, see go-radix.
The full documentation is available on Godoc.
Below is a simple example of usage
// Create a tree
r := iradix.New()
r, _, _ = r.Insert([]byte("foo"), 1)
r, _, _ = r.Insert([]byte("bar"), 2)
r, _, _ = r.Insert([]byte("foobar"), 2)
// Find the longest prefix match
m, _, _ := r.Root().LongestPrefix([]byte("foozip"))
if string(m) != "foo" {
panic("should be foo")
}
Here is an example of performing a range scan of the keys.
// Create a tree
r := iradix.New()
r, _, _ = r.Insert([]byte("001"), 1)
r, _, _ = r.Insert([]byte("002"), 2)
r, _, _ = r.Insert([]byte("005"), 5)
r, _, _ = r.Insert([]byte("010"), 10)
r, _, _ = r.Insert([]byte("100"), 10)
// Range scan over the keys that sort lexicographically between [003, 050)
it := r.Root().Iterator()
it.SeekLowerBound([]byte("003"))
for key, _, ok := it.Next(); ok; key, _, ok = it.Next() {
if key >= "050" {
break
}
fmt.Println(key)
}
// Output:
// 005
// 010