The original paper: a unified single-cell data integration framework with optimal transport
Website and documentation: https://uniport.readthedocs.io
Source Code (MIT): https://github.com/caokai1073/uniport
Author's Homepage: www.caokai.site
The uniport package can be installed via pip3:
pip3 install uniport
Please checkout the documentations and tutorials for more information at uniport.readthedocs.io.
Key parameters includes:
- adatas: List of AnnData matrices for each dataset.
- adata_cm: AnnData matrix containing common genes from different datasets.
- mode: Choose from ['h', 'v', 'd'] If 'mode=h', integrate data with common genes (Horizontal integration). If 'mode=v', integrate data profiled from the same cells (Vertical integration). If 'mode=d', inetrgate data without common genes (Diagonal integration). Default: 'h'.
- lambda_s: balanced parameter for common and specific genes. Default: 0.5
- lambda_recon: balanced parameter for reconstruct term. Default: 1.0
- lambda_kl: balanced parameter for KL divergence. Default: 0.5
- lambda_ot: balanced parameter for OT. Default: 1.0
- iteration: max iterations for training. Training one batch_size samples is one iteration. Default: 30000
- ref_id: id of reference dataset. Default: The domain_id of last dataset
- save_OT: if True, output a global OT plan. Need more memory. Default: False
- out: output of uniPort. Choose from ['latent', 'project', 'predict']. If out=='latent', train the network and output cell embeddings. If out=='project', project data into the latent space and output cell embeddings. If out=='predict', project data into the latent space and output cell embeddings through a specified decoder. Default: 'latent'
import uniport as up
import scanpy as sc
# HVG: highly variable genes
adata1 = sc.read_h5ad('adata1.h5ad') # preprocessed data with data1 specific HVG
adata2 = sc.read_h5ad('adata2.h5ad') # preprocessed data with data2 specific HVG, as reference data
adata_cm = sc.read_h5ad('adata_cm.h5ad') # preprocesssed data with common HVG
# integration with both common and dataset-specific genes
adata = up.Run(adatas=[adata1, adata2], adata_cm=adata_cm)
# save global optimal transport matrix
adata, OT = up.Run(adatas=[adata1, adata2], adata_cm=adata_cm, save_OT=True)
# integration with only common genes
adata = up.Run(adata_cm=adata_cm)
# integration without common genes
adata = up.Run(adatas=[adata1, adata2], mode='d')
# integration with paired datasets
adata = up.Run(adatas=[adata1, adata2], mode='v')
@article{Cao2022.02.14.480323,
author = {Cao, Kai and Gong, Qiyu and Hong, Yiguang and Wan, Lin},
title = {uniPort: a unified computational framework for single-cell data integration with optimal transport},
year = {2022},
doi = {10.1101/2022.02.14.480323},
publisher = {Cold Spring Harbor Laboratory},
journal = {bioRxiv}}