Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Hmi vae init #1

Open
wants to merge 18 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .pre-commit-config.yaml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
repos:
- repo: https://github.com/python/black
rev: 20.8b1
rev: 22.3.0
hooks:
- id: black
- repo: https://gitlab.com/pycqa/flake8
Expand Down
152 changes: 152 additions & 0 deletions hmivae/ScModeDataloader.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,152 @@
import numpy as np
import pandas as pd
import torch
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from torch.utils.data import TensorDataset


def sparse_numpy_to_torch(adj_mat):
"""Construct sparse torch tensor
Need to do csr -> coo
then follow https://stackoverflow.com/questions/50665141/converting-a-scipy-coo-matrix-to-pytorch-sparse-tensor
"""
adj_mat_coo = adj_mat.tocoo()

values = adj_mat_coo.data
indices = np.vstack((adj_mat_coo.row, adj_mat_coo.col))

i = torch.LongTensor(indices)
v = torch.FloatTensor(values)
shape = adj_mat_coo.shape

return torch.sparse_coo_tensor(i, v, shape)


def get_n_cell_neighbours(adj_mat):
"""Get the sum of a sparse matrix
Need to first replace all non-zero elements with 1
Then add them up to get the number of neighbours
"""
adj_mat[adj_mat.nonzero()] = 1.0
n_neighbours_sparse = adj_mat.sum(1)

return np.asarray(n_neighbours_sparse)


class ScModeDataloader(TensorDataset):
def __init__(self, adata, scalers=None):
"""
Need to get the following from adata:
Y - NxP mean expression matrix
S - Nx(pC2) correlation matrix
M - Nx7 morphology matrix
scalers: set of data scalers
"""
self.adata = adata
Y = adata.X # per cell protein mean expression
S = adata.obsm["correlations"]
M = adata.obsm["morphology"]
weights = adata.obsm["weights"]

self.n_cells = Y.shape[0] # number of cells

if scalers is None:
self.scalers = {}
self.scalers["Y"] = StandardScaler().fit(Y)
self.scalers["S"] = StandardScaler().fit(S)
self.scalers["M"] = StandardScaler().fit(M)

else:
self.scalers = scalers

Y = self.scalers["Y"].transform(Y)
S = self.scalers["S"].transform(S)
M = self.scalers["M"].transform(M)

self.Y = torch.tensor(Y).float()
self.S = torch.tensor(S).float()
self.M = torch.tensor(M).float()
self.C = self.get_spatial_context()
self.weights = torch.tensor(
weights
).float() # these don't need to be scaled, not a data input

self.samples_onehot = self.one_hot_encoding()

if "background_covs" in adata.obsm.keys(): # dealing with background covariates
BKG = adata.obsm["background_covs"]
if scalers is None:
self.scalers["BKG"] = StandardScaler().fit(BKG)
BKG = self.scalers["BKG"].transform(BKG)
else:
BKG = self.scalers["BKG"].transform(BKG)

self.BKG = torch.tensor(BKG).float()
else:
self.BKG = None

def __len__(self):
return self.Y.shape[0]

def one_hot_encoding(self, test=False):
"""
Creates a onehot encoding for samples.
"""
onehotenc = OneHotEncoder()
X = self.adata.obs[["Sample_name"]]
onehot_X = onehotenc.fit_transform(X).toarray()

df = pd.DataFrame(onehot_X, columns=onehotenc.categories_[0])

df = df.reindex(columns=self.adata.obs.Sample_name.unique().tolist())

return torch.tensor(df.to_numpy()).float()

def get_spatial_context(self):
"""
Multiplies the sparse neighbourhood matrix to protein mean expression (self.Y),
protein-protein correlation (self.S) and cell morphology (self.M) matrices.
The product-sum is normalized by the number of neighbours each cell has.
The resulting matrix, self.C, is the spatial context.
"""
adj_mat = sparse_numpy_to_torch(
self.adata.obsp["connectivities"]
) # adjacency matrix
concatenated_features = torch.cat((self.Y, self.S, self.M), 1)

n_cell_neighbours = get_n_cell_neighbours(
self.adata.copy().obsp["connectivities"]
)

unnormalized_C = torch.smm(
adj_mat, concatenated_features
).to_dense() # unnormalized spatial context for each cell

C = torch.div(
unnormalized_C, torch.tensor(n_cell_neighbours)
) # normalize by number of adjacent cells
return C

def __getitem__(self, idx):

if self.BKG is None:
return (
self.Y[idx, :],
self.S[idx, :],
self.M[idx, :],
self.C[idx, :],
self.samples_onehot[idx, :],
self.weights[idx, :],
idx,
)
else:
return (
self.Y[idx, :],
self.S[idx, :],
self.M[idx, :],
self.C[idx, :],
self.samples_onehot[idx, :],
self.weights[idx, :],
self.BKG[idx, :],
idx,
)
File renamed without changes.
Loading