Skip to content

This repository is the official Pytorch implementation of Self-Supervised Aggregation of Diverse Experts for Test-Agnostic Long-Tailed Recognition (NeurIPS 2022).

License

Notifications You must be signed in to change notification settings

buer1121/SADE-AgnosticLT

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Test-Agnostic Long-Tailed Recognition

PWC PWC PWC

This repository is the official Pytorch implementation of Self-Supervised Aggregation of Diverse Experts for Test-Agnostic Long-Tailed Recognition (NeurIPS 2022).

  • SADE (our method) innovates the expert training scheme by introducing diversity-promoting expertise-guided losses, which train different experts to handle distinct class distributions. In this way, the learned experts would be more diverse than existing multi-expert methods, leading to better ensemble performance, and aggregatedly simulate a wide spectrum of possible class distributions.
  • SADE develops a new self-supervised method, namely prediction stability maximization, to adaptively aggregate these experts for better handling unknown test distribution, using unlabeled test class data.

1. Results

(1) ImageNet-LT (ResNeXt-50)

Long-tailed recognition with uniform test class distribution:

Methods MACs(G) Top-1 acc. Model
Softmax 4.26 48.0
RIDE 6.08 56.3
SADE (ours) 6.08 58.8 Download

Test-agnostic long-tailed recognition:

Methods MACs(G) Forward-50 Forward-10 Uniform Backward-10 Backward-50
Softmax 4.26 66.1 60.3 48.0 34.9 27.6
RIDE 6.08 67.6 64.0 56.3 48.7 44.0
SADE (ours) 6.08 69.4 65.4 58.8 54.5 53.1

(2) CIFAR100-Imbalance ratio 100 (ResNet-32)

Long-tailed recognition with uniform test class distribution:

Methods MACs(G) Top-1 acc.
Softmax 0.07 41.4
RIDE 0.11 48.0
SADE (ours) 0.11 49.8

Test-agnostic long-tailed recognition:

Methods MACs(G) Forward-50 Forward-10 Uniform Backward-10 Backward-50
Softmax 0.07 62.3 56.2 41.4 25.8 17.5
RIDE 0.11 63.0 57.0 48.0 35.4 29.3
SADE (ours) 0.11 65.9 58.3 49.8 43.9 42.4

(3) Places-LT (ResNet-152)

Long-tailed recognition with uniform test class distribution:

Methods MACs(G) Top-1 acc.
Softmax 11.56 31.4
RIDE 13.18 40.3
SADE (ours) 13.18 40.9

Test-agnostic long-tailed recognition:

Methods MACs(G) Forward-50 Forward-10 Uniform Backward-10 Backward-50
Softmax 11.56 45.6 40.2 31.4 23.4 19.4
RIDE 13.18 43.1 41.6 40.3 38.2 36.9
SADE (ours) 13.18 46.4 43.3 40.9 41.4 41.6

(4) iNaturalist 2018 (ResNet-50)

Long-tailed recognition with uniform test class distribution:

Methods MACs(G) Top-1 acc.
Softmax 4.14 64.7
RIDE 5.80 71.8
SADE (ours) 5.80 72.9

Test-agnostic long-tailed recognition:

Methods MACs(G) Forward-3 Forward-2 Uniform Backward-2 Backward-3
Softmax 4.14 65.4 65.5 64.7 64.0 63.4
RIDE 5.80 71.5 71.9 71.8 71.9 71.8
SADE (ours) 5.80 72.3 72.5 72.9 73.5 73.3

2. Requirements

  • To install requirements:
pip install -r requirements.txt
  • Hardware requirements 8 GPUs with >= 11G GPU RAM are recommended. Otherwise the model with more experts may not fit in, especially on datasets with more classes (the FC layers will be large). We do not support CPU training, but CPU inference could be supported by slight modification.

3. Datasets

(1) Four bechmark datasets

  • Please download these datasets and put them to the /data file.
  • ImageNet-LT and Places-LT can be found at here.
  • iNaturalist data should be the 2018 version from here.
  • CIFAR-100 will be downloaded automatically with the dataloader.
data
├── ImageNet_LT
│   ├── test
│   ├── train
│   └── val
├── CIFAR100
│   └── cifar-100-python
├── Place365
│   ├── data_256
│   ├── test_256
│   └── val_256
└── iNaturalist 
    ├── test2018
    └── train_val2018

(2) Txt files

  • We provide txt files for test-agnostic long-tailed recognition for ImageNet-LT, Places-LT and iNaturalist 2018. CIFAR-100 will be generated automatically with the code.
  • For iNaturalist 2018, please unzip the iNaturalist_train.zip.
data_txt
├── ImageNet_LT
│   ├── ImageNet_LT_backward2.txt
│   ├── ImageNet_LT_backward5.txt
│   ├── ImageNet_LT_backward10.txt
│   ├── ImageNet_LT_backward25.txt
│   ├── ImageNet_LT_backward50.txt
│   ├── ImageNet_LT_forward2.txt
│   ├── ImageNet_LT_forward5.txt
│   ├── ImageNet_LT_forward10.txt
│   ├── ImageNet_LT_forward25.txt
│   ├── ImageNet_LT_forward50.txt
│   ├── ImageNet_LT_test.txt
│   ├── ImageNet_LT_train.txt
│   ├── ImageNet_LT_uniform.txt
│   └── ImageNet_LT_val.txt
├── Places_LT_v2
│   ├── Places_LT_backward2.txt
│   ├── Places_LT_backward5.txt
│   ├── Places_LT_backward10.txt
│   ├── Places_LT_backward25.txt
│   ├── Places_LT_backward50.txt
│   ├── Places_LT_forward2.txt
│   ├── Places_LT_forward5.txt
│   ├── Places_LT_forward10.txt
│   ├── Places_LT_forward25.txt
│   ├── Places_LT_forward50.txt
│   ├── Places_LT_test.txt
│   ├── Places_LT_train.txt
│   ├── Places_LT_uniform.txt
│   └── Places_LT_val.txt
└── iNaturalist18
    ├── iNaturalist18_backward2.txt
    ├── iNaturalist18_backward3.txt
    ├── iNaturalist18_forward2.txt
    ├── iNaturalist18_forward3.txt
    ├── iNaturalist18_train.txt
    ├── iNaturalist18_uniform.txt
    └── iNaturalist18_val.txt 

4. Pretrained models

  • For the training on Places-LT, we follow previous methods and use the pre-trained ResNet-152 model.
  • Please download the checkpoint. Unzip and move the checkpoint files to /model/pretrained_model_places/.

5. Script

(1) ImageNet-LT

Training

  • To train the expertise-diverse model, run this command:
python train.py -c configs/config_imagenet_lt_resnext50_sade.json

Evaluate

  • To evaluate expertise-diverse model on the uniform test class distribution, run:
python test.py -r checkpoint_path
  • To evaluate expertise-diverse model on agnostic test class distributions, run:
python test_all_imagenet.py -r checkpoint_path

Test-time training

  • To test-time train the expertise-diverse model for agnostic test class distributions, run:
python test_train_imagenet.py -c configs/test_time_imagenet_lt_resnext50_sade.json -r checkpoint_path

(2) CIFAR100-LT

Training

  • To train the expertise-diverse model, run this command:
python train.py -c configs/config_cifar100_ir100_sade.json
  • One can change the imbalance ratio from 100 to 10/50 by changing the config file.

Evaluate

  • To evaluate expertise-diverse model on the uniform test class distribution, run:
python test.py -r checkpoint_path
  • To evaluate expertise-diverse model on agnostic test class distributions, run:
python test_all_cifar.py -r checkpoint_path

Test-time training

  • To test-time train the expertise-diverse model for agnostic test class distributions, run:
python test_train_cifar.py -c configs/test_time_cifar100_ir100_sade.json -r checkpoint_path
  • One can change the imbalance ratio from 100 to 10/50 by changing the config file.

(3) Places-LT

Training

  • To train the expertise-diverse model, run this command:
python train.py -c configs/config_places_lt_resnet152_sade.json

Evaluate

  • To evaluate expertise-diverse model on the uniform test class distribution, run:
python test_places.py -r checkpoint_path
  • To evaluate expertise-diverse model on agnostic test class distributions, run:
python test_all_places.py -r checkpoint_path

Test-time training

  • To test-time train the expertise-diverse model for agnostic test class distributions, run:
python test_train_places.py -c configs/test_time_places_lt_resnet152_sade.json -r checkpoint_path

(4) iNaturalist 2018

Training

  • To train the expertise-diverse model, run this command:
python train.py -c configs/config_iNaturalist_resnet50_sade.json

Evaluate

  • To evaluate expertise-diverse model on the uniform test class distribution, run:
python test.py -r checkpoint_path
  • To evaluate expertise-diverse model on agnostic test class distributions, run:
python test_all_inat.py -r checkpoint_path

Test-time training

  • To test-time train the expertise-diverse model for agnostic test class distributions, run:
python test_train_inat.py -c configs/test_time_iNaturalist_resnet50_sade.json -r checkpoint_path

6. Citation

If you find our work inspiring or use our codebase in your research, please cite our work.

@inproceedings{zhang2022Self,
  title={Self-Supervised Aggregation of Diverse Experts for Test-Agnostic Long-Tailed Recognition},
  author={Zhang, Yifan and Hooi, Bryan and Hong, Lanqing and Feng, Jiashi},
  booktitle={Advances in Neural Information Processing Systems},
  year={2022}
}

7. Acknowledgements

This is a project based on this pytorch template.

The mutli-expert framework are based on RIDE. The data generation of agnostic test class distributions takes references from LADE.

About

This repository is the official Pytorch implementation of Self-Supervised Aggregation of Diverse Experts for Test-Agnostic Long-Tailed Recognition (NeurIPS 2022).

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%