Skip to content

Commit

Permalink
Added annotation typing to inception (pytorch#2857)
Browse files Browse the repository at this point in the history
* style: Added annotation typing for inception

* refactor: Moved factory function after class definition

* style: Changed attribute setting for type hinting

* refactor: Removed un-necessary import

* fix: Fixed typing in constructors

* fix: Fixed kwargs typing

* style: Fixed lint

* refactor: Moved helpers function back and quote typed it
  • Loading branch information
frgfm authored and bryant1410 committed Nov 22, 2020
1 parent 6038324 commit 2e01f47
Showing 1 changed file with 67 additions and 29 deletions.
96 changes: 67 additions & 29 deletions torchvision/models/inception.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,9 +3,9 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.jit.annotations import Optional
from torch import Tensor
from .utils import load_state_dict_from_url
from typing import Callable, Any, Optional, Tuple, List


__all__ = ['Inception3', 'inception_v3', 'InceptionOutputs', '_InceptionOutputs']
Expand All @@ -24,7 +24,7 @@
_InceptionOutputs = InceptionOutputs


def inception_v3(pretrained=False, progress=True, **kwargs):
def inception_v3(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> "Inception3":
r"""Inception v3 model architecture from
`"Rethinking the Inception Architecture for Computer Vision" <http://arxiv.org/abs/1512.00567>`_.
Expand Down Expand Up @@ -63,8 +63,14 @@ def inception_v3(pretrained=False, progress=True, **kwargs):

class Inception3(nn.Module):

def __init__(self, num_classes=1000, aux_logits=True, transform_input=False,
inception_blocks=None, init_weights=None):
def __init__(
self,
num_classes: int = 1000,
aux_logits: bool = True,
transform_input: bool = False,
inception_blocks: Optional[List[Callable[..., nn.Module]]] = None,
init_weights: Optional[bool] = None
) -> None:
super(Inception3, self).__init__()
if inception_blocks is None:
inception_blocks = [
Expand Down Expand Up @@ -124,15 +130,15 @@ def __init__(self, num_classes=1000, aux_logits=True, transform_input=False,
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)

def _transform_input(self, x):
def _transform_input(self, x: Tensor) -> Tensor:
if self.transform_input:
x_ch0 = torch.unsqueeze(x[:, 0], 1) * (0.229 / 0.5) + (0.485 - 0.5) / 0.5
x_ch1 = torch.unsqueeze(x[:, 1], 1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5
x_ch2 = torch.unsqueeze(x[:, 2], 1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5
x = torch.cat((x_ch0, x_ch1, x_ch2), 1)
return x

def _forward(self, x):
def _forward(self, x: Tensor) -> Tuple[Tensor, Optional[Tensor]]:
# N x 3 x 299 x 299
x = self.Conv2d_1a_3x3(x)
# N x 32 x 149 x 149
Expand Down Expand Up @@ -188,13 +194,13 @@ def _forward(self, x):
return x, aux

@torch.jit.unused
def eager_outputs(self, x: torch.Tensor, aux: Optional[Tensor]) -> InceptionOutputs:
def eager_outputs(self, x: Tensor, aux: Optional[Tensor]) -> InceptionOutputs:
if self.training and self.aux_logits:
return InceptionOutputs(x, aux)
else:
return x # type: ignore[return-value]

def forward(self, x):
def forward(self, x: Tensor) -> InceptionOutputs:
x = self._transform_input(x)
x, aux = self._forward(x)
aux_defined = self.training and self.aux_logits
Expand All @@ -208,7 +214,12 @@ def forward(self, x):

class InceptionA(nn.Module):

def __init__(self, in_channels, pool_features, conv_block=None):
def __init__(
self,
in_channels: int,
pool_features: int,
conv_block: Optional[Callable[..., nn.Module]] = None
) -> None:
super(InceptionA, self).__init__()
if conv_block is None:
conv_block = BasicConv2d
Expand All @@ -223,7 +234,7 @@ def __init__(self, in_channels, pool_features, conv_block=None):

self.branch_pool = conv_block(in_channels, pool_features, kernel_size=1)

def _forward(self, x):
def _forward(self, x: Tensor) -> List[Tensor]:
branch1x1 = self.branch1x1(x)

branch5x5 = self.branch5x5_1(x)
Expand All @@ -239,14 +250,18 @@ def _forward(self, x):
outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool]
return outputs

def forward(self, x):
def forward(self, x: Tensor) -> Tensor:
outputs = self._forward(x)
return torch.cat(outputs, 1)


class InceptionB(nn.Module):

def __init__(self, in_channels, conv_block=None):
def __init__(
self,
in_channels: int,
conv_block: Optional[Callable[..., nn.Module]] = None
) -> None:
super(InceptionB, self).__init__()
if conv_block is None:
conv_block = BasicConv2d
Expand All @@ -256,7 +271,7 @@ def __init__(self, in_channels, conv_block=None):
self.branch3x3dbl_2 = conv_block(64, 96, kernel_size=3, padding=1)
self.branch3x3dbl_3 = conv_block(96, 96, kernel_size=3, stride=2)

def _forward(self, x):
def _forward(self, x: Tensor) -> List[Tensor]:
branch3x3 = self.branch3x3(x)

branch3x3dbl = self.branch3x3dbl_1(x)
Expand All @@ -268,14 +283,19 @@ def _forward(self, x):
outputs = [branch3x3, branch3x3dbl, branch_pool]
return outputs

def forward(self, x):
def forward(self, x: Tensor) -> Tensor:
outputs = self._forward(x)
return torch.cat(outputs, 1)


class InceptionC(nn.Module):

def __init__(self, in_channels, channels_7x7, conv_block=None):
def __init__(
self,
in_channels: int,
channels_7x7: int,
conv_block: Optional[Callable[..., nn.Module]] = None
) -> None:
super(InceptionC, self).__init__()
if conv_block is None:
conv_block = BasicConv2d
Expand All @@ -294,7 +314,7 @@ def __init__(self, in_channels, channels_7x7, conv_block=None):

self.branch_pool = conv_block(in_channels, 192, kernel_size=1)

def _forward(self, x):
def _forward(self, x: Tensor) -> List[Tensor]:
branch1x1 = self.branch1x1(x)

branch7x7 = self.branch7x7_1(x)
Expand All @@ -313,14 +333,18 @@ def _forward(self, x):
outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool]
return outputs

def forward(self, x):
def forward(self, x: Tensor) -> Tensor:
outputs = self._forward(x)
return torch.cat(outputs, 1)


class InceptionD(nn.Module):

def __init__(self, in_channels, conv_block=None):
def __init__(
self,
in_channels: int,
conv_block: Optional[Callable[..., nn.Module]] = None
) -> None:
super(InceptionD, self).__init__()
if conv_block is None:
conv_block = BasicConv2d
Expand All @@ -332,7 +356,7 @@ def __init__(self, in_channels, conv_block=None):
self.branch7x7x3_3 = conv_block(192, 192, kernel_size=(7, 1), padding=(3, 0))
self.branch7x7x3_4 = conv_block(192, 192, kernel_size=3, stride=2)

def _forward(self, x):
def _forward(self, x: Tensor) -> List[Tensor]:
branch3x3 = self.branch3x3_1(x)
branch3x3 = self.branch3x3_2(branch3x3)

Expand All @@ -345,14 +369,18 @@ def _forward(self, x):
outputs = [branch3x3, branch7x7x3, branch_pool]
return outputs

def forward(self, x):
def forward(self, x: Tensor) -> Tensor:
outputs = self._forward(x)
return torch.cat(outputs, 1)


class InceptionE(nn.Module):

def __init__(self, in_channels, conv_block=None):
def __init__(
self,
in_channels: int,
conv_block: Optional[Callable[..., nn.Module]] = None
) -> None:
super(InceptionE, self).__init__()
if conv_block is None:
conv_block = BasicConv2d
Expand All @@ -369,7 +397,7 @@ def __init__(self, in_channels, conv_block=None):

self.branch_pool = conv_block(in_channels, 192, kernel_size=1)

def _forward(self, x):
def _forward(self, x: Tensor) -> List[Tensor]:
branch1x1 = self.branch1x1(x)

branch3x3 = self.branch3x3_1(x)
Expand All @@ -393,24 +421,29 @@ def _forward(self, x):
outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
return outputs

def forward(self, x):
def forward(self, x: Tensor) -> Tensor:
outputs = self._forward(x)
return torch.cat(outputs, 1)


class InceptionAux(nn.Module):

def __init__(self, in_channels, num_classes, conv_block=None):
def __init__(
self,
in_channels: int,
num_classes: int,
conv_block: Optional[Callable[..., nn.Module]] = None
) -> None:
super(InceptionAux, self).__init__()
if conv_block is None:
conv_block = BasicConv2d
self.conv0 = conv_block(in_channels, 128, kernel_size=1)
self.conv1 = conv_block(128, 768, kernel_size=5)
self.conv1.stddev = 0.01
self.conv1.stddev = 0.01 # type: ignore[assignment]
self.fc = nn.Linear(768, num_classes)
self.fc.stddev = 0.001
self.fc.stddev = 0.001 # type: ignore[assignment]

def forward(self, x):
def forward(self, x: Tensor) -> Tensor:
# N x 768 x 17 x 17
x = F.avg_pool2d(x, kernel_size=5, stride=3)
# N x 768 x 5 x 5
Expand All @@ -430,12 +463,17 @@ def forward(self, x):

class BasicConv2d(nn.Module):

def __init__(self, in_channels, out_channels, **kwargs):
def __init__(
self,
in_channels: int,
out_channels: int,
**kwargs: Any
) -> None:
super(BasicConv2d, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
self.bn = nn.BatchNorm2d(out_channels, eps=0.001)

def forward(self, x):
def forward(self, x: Tensor) -> Tensor:
x = self.conv(x)
x = self.bn(x)
return F.relu(x, inplace=True)

0 comments on commit 2e01f47

Please sign in to comment.