Skip to content

brainelectronics/micropython-modules

Repository files navigation

MicroPython modules

Downloads Release MicroPython License: MIT CI

Custom brainelectronics MicroPython helpers, modules and wrappers


About

This is a collection of MicroPython modules required for the BE32-01 and other brainelectronics projects.

Available generators

For the individual usage of a helper, module or wrapper read the brief description and usage instructions of each module.

Installation

Install required tools

Python3 must be installed on your system. Check the current Python version with the following command

python --version
python3 --version

Depending on which command Python 3.x.y (with x.y as some numbers) is returned, use that command to proceed.

python3 -m venv .venv
source .venv/bin/activate

pip install -r requirements.txt

Setup

Install package

Connect your MicroPython board to a network

import network
station = network.WLAN(network.STA_IF)
station.active(True)
station.connect('SSID', 'PASSWORD')
station.isconnected()

General

Install the latest package version of this lib on the MicroPython device

import mip
mip.install("github:brainelectronics/micropython-modules")

For MicroPython versions below 1.19.1 use the upip package instead of mip

import upip
upip.install('micropython-brainelectronics-helpers')

Specific version

Install a specific, fixed package version of this lib on the MicroPython device

import mip
# install a verions of a specific branch
mip.install("github:brainelectronics/micropython-modules", version="feature/support-mip")
# install a tag version
mip.install("github:brainelectronics/micropython-modules", version="1.7.0")

Test version

Install a specific release candidate version uploaded to Test Python Package Index on every PR on the MicroPython device. If no specific version is set, the latest stable version will be used.

import mip
mip.install("github:brainelectronics/micropython-modules", version="1.7.0-rc5.dev22")

For MicroPython versions below 1.19.1 use the upip package instead of mip

import upip
# overwrite index_urls to only take artifacts from test.pypi.org
upip.index_urls = ['https://test.pypi.org/pypi']
upip.install('micropython-brainelectronics-helpers')

See also brainelectronics Test PyPi Server in Docker for a test PyPi server running on Docker.

Manually

Copy the module to the MicroPython board and import them as shown below using Remote MicroPython shell

Open the remote shell with the following command. Additionally use -b 115200 in case no CP210x is used but a CH34x.

rshell -p /dev/tty.SLAB_USBtoUART --editor nano

Perform the following command to copy all files and folders to the device

mkdir /pyboard/lib
mkdir /pyboard/lib/be_helpers
cp be_helpers/* /pyboard/lib/be_helpers

Install required dependencies (requires network connection, see may use the WifiHelper)

Generic Helper

Generic helper class with different usecases and functions.

from be_helpers.generic_helper import GenericHelper

# get a random value between zero and 100 (inclusive)
GenericHelper.get_random_value(0, 100)
# >>> 72

# get amount of free disk space in kilobytes
GenericHelper.df(path='/', unit='kb')
# >>> '1984.000 kB'

# get dict of free RAM with total, free and percentage used
GenericHelper.get_free_memory()
# >>> {'percentage': '99.76%', 'total': 4098240, 'free': 4088400}

# get UUID of default length, might be different on PyCOM, MicroPython, ...
GenericHelper.get_uuid()
# >>> b'308398d9eefc'
# GenericHelper.get_uuid(length=18)
# >>> b'308398d9eefc308398'

# get detailed info (full == True) RAM informations
GenericHelper.free(full=True)
# >>> 'Total: 4006.1 kB, Free: 3992.56 kB (99.76%)'

# interpret a string as dictionary
some_string = "{'klaus': 123}"
d = GenericHelper.str_to_dict(data=some_string)
type(d)
# >>> <class 'dict'>

# save a dictionary as JSON file
GenericHelper.save_json(path='/test.json', data=d)

# load a JSON file as dictionary
read_back_dict = GenericHelper.load_json(path='/test.json')
read_back_dict
# >>> {'klaus': 123}

read_back_dict == d
# >>> True

# save a string to file in non binary mode
GenericHelper.save_file(path='/test.txt', data=some_string, mode='w')

# load the content of a file in non binary mode
read_back_str = GenericHelper.load_file(path='/test.txt', mode='r')
read_back_str
# >>> "{'klaus': 123}"

read_back_str == some_string
# >>> True

LED Helper

Handle the onbaord LED on a BE32-01, ESP32 or ESP8266 as well as Neopixel LEDs.

Onboard LED

This example demonstrates how to interact with the onboard LED on the BE32-01

Basics

The onboard LED is availabe on Pin 4 on the BE32-01 board in inverted mode. For the Raspberry Pi Pico (W) initialise the LED like this:

from be_helpers.led_helper import Led
led = Led(led_pin="LED", inverted=False)
from be_helpers.led_helper import Led

# Onboard LED is availabe on Pin 4 on BE32-01 in inverted mode
led = Led()
print('Onboard LED is ON: {}'.format(led.on))
# Onboard LED is ON: False

# turn onboard LED on
led.state = True

# alternative way to turn onboard LED on
led.turn_on()

# turn onboard LED off
led.state = False

# alternative way to turn onboard LED off
led.turn_off()

# flash LED for 5 times, with 100ms delay between on and off states
# this is blocking other actions until flashing operation finished
led.flash(amount=5, delay_ms=100)
Advanced

Other (LED) pins can be used by specifiying them at the beginning

from be_helpers.led_helper import Led

# LED at pin 12 will be active if pin is HIGH
led = Led(led_pin=12, inverted=False)
print('LED is ON: {}'.format(led.on))
from be_helpers.led_helper import Led

# Onboard LED is availabe on Pin 4 on BE32-01
led = Led()
print('LED is ON: {}'.format(led.on))

# let LED blink in a seperate thread with 100ms between on and off
led.blink(delay_ms=100)
print('LED is blinking: {}'.format(led.blinking))
# LED is blinking: True

# stop the LED blinking
led.blinking = False

# set different blinking delay
print('Current blinking delay: {}ms'.format(led.blink_delay))
# Current blinking delay: 100ms
led.blink_delay = 50

# start blinking again (with 50ms delay)
led.blinking = True

Neopixel

This example demonstrates how to interact with the Neopixel LED on the BE32-01.

Basics

The one Neopixel LED is availabe on Pin 27 on the BE32-01 board.

from be_helpers.led_helper import Neopixel

# Neopixel is by default attached to Pin 27 on BE32-01
pixel = Neopixel()
print('Neopixel is active: {}'.format(pixel.active))

# turn Neopixel red with 50/255 intensity
pixel.red(50)
# pixel.green(50)
# pixel.blue(50)

pixel.active = False
# turn Neopixel off

# get the current Neopixel color
print('Neopixel color (RGB): {}'.format(pixel.color))
# Neopixel color (RGB): [50, 0, 0]

# get all available neopixel colors
pixel.colors
# >>> {'red': [30, 0, 0], 'green': [0, 30, 0], ...}

# turn Neopixel yellow
pixel.color = 'yellow'

# get current intensity of Neopixel
print('Neopixel intensity: {}/255'.format(pixel.intensity))
# Neopixel intensity: 30/255

# reduce Neopixel intensity to 10/255
pixel.intensity = 10

# turn Neopixel off, but remember last active color
pixel.clear()
Advanced

Other Neopixel pin can be used by specifiying them at the beginning

from be_helpers.led_helper import Neopixel

# Neopixel at pin 37 will be active if pin is HIGH
pixel = Neopixel(neopixel_pin=37, neopixels=3)
print('Neopixel is active: {}'.format(pixel.active))
from be_helpers.led_helper import Neopixel

# Neopixel is by default attached to Pin 27 on BE32-01
pixel = Neopixel()

# set custom RGB color
pixel.set(rgb=[10, 20, 30])

# let Neopixel fade the currently set color in a seperate thread with 100ms
# between intensity changes, 50ms is default and quite smooth
pixel.fade(delay_ms=100)

# stop the Neopixel fading
pixel.fading = False

# set different fading delay
print('Current fading delay: {}ms'.format(pixel.fade_delay))
# Current fading delay: 100ms
pixel.fade_delay = 50

# start fading again (with 50ms delay)
pixel.fading = True

# stop the Neopixel fading
pixel.fading = False

# define a custom color and set the Neopixel to it
pixel.colors = {'DarlingColor': [26, 3, 18]}
pixel.color = 'DarlingColor'

Modbus Bridge

This requires brainelectronics MicroPython Modbus. Forked and extended from SFERALABS Exo Sense Py.

Connect the board to a network and install the package like this for MicroPython 1.20.0 or never

import mip
mip.install("github:brainelectronics/micropython-modbus")

For MicroPython versions below 1.19.1 use the upip package instead of mip

import upip
upip.install('micropython-modbus')
import time
import machine

from be_helpers.modbus_bridge import ModbusBridge

register_file = 'registers/modbusRegisters-MyEVSE.json'
rtu_pins = (25, 26)     # (TX, RX)
tcp_port = 180          # TCP port for Modbus connection
run_time = 60           # run this example for this amount of seconds

# default level is 'warning', may use custom logger to get initial log data
mb_bridge = ModbusBridge(register_file=register_file)

# define and apply Modbus TCP host settings
host_settings = {
    'type': 'tcp',
    'unit': tcp_port,
    'address': -1,
    'baudrate': -1,
    'mode': 'master'
}
mb_bridge.connection_settings_host = host_settings

# setup Modbus connections to host and client
mb_bridge.setup_connection(pins=rtu_pins)   # (TX, RX)

print('Modbus instances:')
print('\t Act as Host: {} on {}'.format(mb_bridge.host, mb_bridge.host_unit))
print('\t Act as Client: {} on {}'.format(mb_bridge.client, mb_bridge.client_unit))

# readout the client registers once manually
# mb_bridge.read_all_registers()

# start collecting latest RTU client data in thread and TCP data provision
mb_bridge.collecting_client_data = True
mb_bridge.provisioning_host_data = True

print('Run client and host for {} seconds'.format(run_time))
print('Collect latest client data every {} seconds'.format(mb_bridge.collection_interval))
print('Synchronize Host-Client every {} seconds'.format(mb_bridge.synchronisation_interval))

start_time = time.time()
while time.time() < (start_time + run_time):
    try:
        machine.idle()
    except KeyboardInterrupt:
        print('KeyboardInterrupt, stop collection + provisioning after {}'.
              format(time.time() - start_time))
        break
    except Exception as e:
        print('Exception: {}'.format(e))

# stop collecting latest client data in thread and data provision via TCP
mb_bridge.collecting_client_data = False
mb_bridge.provisioning_host_data = False

# wait for 5 more seconds to safely finish the may still running threads
time.sleep(5)

Path Helper

MicroPython does not have an os.path.exists() function. This small module adds this function.

from be_helpers.path_helper import PathHelper

path = 'registers/modbusRegisters.json'
result = PathHelper.exists(path=path)
print('File at path "{}" does exist: {}'.format(path, result))

Time Helper

from be_helpers.time_helper import TimeHelper

# set the timezone offset to +2, default is +1
th = TimeHelper(tz=2)

# sync the RTC with the NTP server (valid network connection required)
th.sync_time()

# get current timestamp in ISO8601 format
th.current_timestamp_iso8601
# >>> '21:23:55 2021-10-04'

# get current hour from RTC
th.hour
# >>> 21

WiFi Helper

from be_helpers.wifi_helper import WifiHelper

# connect to the network 'MyNet' and it's password 'realPassword1'
result = WifiHelper.connect(ssid='MyNet', password='realPassword1', timedout=3)
print('Connection result is: {}'.format(result))

# create an accesspoint named 'MyAP' with a password 'wpa_wpa2_valid_pw'
result = WifiHelper.create_ap(ssid='MyAP', password='wpa_wpa2_valid_pw', channel=10)
print('AP creation result is: {}'.format(result))

wh = WifiHelper()
found_networks = wh.get_wifi_networks_sorted(scan_if_empty=True)
print('Found these networks: {}'.format(found_networks))

# after a scan the networks are available as list of NamedTuple
strongest_net = wh.networks[0].ssid
print('SSID of strongest network: {}'.format(strongest_net))

# convert dBm (RRSI) to quality index in percent
quality = WifiHelper.dbm_to_quality(dBm=wh.networks[0].RSSI)
print('Quality of strongest network {}: {}%'.format(strongest_net, quality))