forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add 4 retinal vessel segmentation benchmark (open-mmlab#315)
* add 4 retinal vessel segmentation configs of UNet * fix flip augmentation * add unet benchmark on 4 medical datasets * fix hrf bug
- Loading branch information
1 parent
b9ba9f6
commit 2e479d3
Showing
10 changed files
with
334 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,59 @@ | ||
# dataset settings | ||
dataset_type = 'ChaseDB1Dataset' | ||
data_root = 'data/CHASE_DB1' | ||
img_norm_cfg = dict( | ||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) | ||
img_scale = (960, 999) | ||
crop_size = (128, 128) | ||
train_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict(type='LoadAnnotations'), | ||
dict(type='Resize', img_scale=img_scale, ratio_range=(0.5, 2.0)), | ||
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), | ||
dict(type='RandomFlip', prob=0.5), | ||
dict(type='PhotoMetricDistortion'), | ||
dict(type='Normalize', **img_norm_cfg), | ||
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), | ||
dict(type='DefaultFormatBundle'), | ||
dict(type='Collect', keys=['img', 'gt_semantic_seg']) | ||
] | ||
test_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict( | ||
type='MultiScaleFlipAug', | ||
img_scale=img_scale, | ||
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0], | ||
flip=False, | ||
transforms=[ | ||
dict(type='Resize', keep_ratio=True), | ||
dict(type='RandomFlip'), | ||
dict(type='Normalize', **img_norm_cfg), | ||
dict(type='ImageToTensor', keys=['img']), | ||
dict(type='Collect', keys=['img']) | ||
]) | ||
] | ||
|
||
data = dict( | ||
samples_per_gpu=4, | ||
workers_per_gpu=4, | ||
train=dict( | ||
type='RepeatDataset', | ||
times=40000, | ||
dataset=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
img_dir='images/training', | ||
ann_dir='annotations/training', | ||
pipeline=train_pipeline)), | ||
val=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
img_dir='images/validation', | ||
ann_dir='annotations/validation', | ||
pipeline=test_pipeline), | ||
test=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
img_dir='images/validation', | ||
ann_dir='annotations/validation', | ||
pipeline=test_pipeline)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,59 @@ | ||
# dataset settings | ||
dataset_type = 'DRIVEDataset' | ||
data_root = 'data/DRIVE' | ||
img_norm_cfg = dict( | ||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) | ||
img_scale = (584, 565) | ||
crop_size = (64, 64) | ||
train_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict(type='LoadAnnotations'), | ||
dict(type='Resize', img_scale=img_scale, ratio_range=(0.5, 2.0)), | ||
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), | ||
dict(type='RandomFlip', prob=0.5), | ||
dict(type='PhotoMetricDistortion'), | ||
dict(type='Normalize', **img_norm_cfg), | ||
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), | ||
dict(type='DefaultFormatBundle'), | ||
dict(type='Collect', keys=['img', 'gt_semantic_seg']) | ||
] | ||
test_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict( | ||
type='MultiScaleFlipAug', | ||
img_scale=img_scale, | ||
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0], | ||
flip=False, | ||
transforms=[ | ||
dict(type='Resize', keep_ratio=True), | ||
dict(type='RandomFlip'), | ||
dict(type='Normalize', **img_norm_cfg), | ||
dict(type='ImageToTensor', keys=['img']), | ||
dict(type='Collect', keys=['img']) | ||
]) | ||
] | ||
|
||
data = dict( | ||
samples_per_gpu=4, | ||
workers_per_gpu=4, | ||
train=dict( | ||
type='RepeatDataset', | ||
times=40000, | ||
dataset=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
img_dir='images/training', | ||
ann_dir='annotations/training', | ||
pipeline=train_pipeline)), | ||
val=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
img_dir='images/validation', | ||
ann_dir='annotations/validation', | ||
pipeline=test_pipeline), | ||
test=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
img_dir='images/validation', | ||
ann_dir='annotations/validation', | ||
pipeline=test_pipeline)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,59 @@ | ||
# dataset settings | ||
dataset_type = 'HRFDataset' | ||
data_root = 'data/HRF' | ||
img_norm_cfg = dict( | ||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) | ||
img_scale = (2336, 3504) | ||
crop_size = (256, 256) | ||
train_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict(type='LoadAnnotations'), | ||
dict(type='Resize', img_scale=img_scale, ratio_range=(0.5, 2.0)), | ||
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), | ||
dict(type='RandomFlip', prob=0.5), | ||
dict(type='PhotoMetricDistortion'), | ||
dict(type='Normalize', **img_norm_cfg), | ||
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), | ||
dict(type='DefaultFormatBundle'), | ||
dict(type='Collect', keys=['img', 'gt_semantic_seg']) | ||
] | ||
test_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict( | ||
type='MultiScaleFlipAug', | ||
img_scale=img_scale, | ||
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0], | ||
flip=False, | ||
transforms=[ | ||
dict(type='Resize', keep_ratio=True), | ||
dict(type='RandomFlip'), | ||
dict(type='Normalize', **img_norm_cfg), | ||
dict(type='ImageToTensor', keys=['img']), | ||
dict(type='Collect', keys=['img']) | ||
]) | ||
] | ||
|
||
data = dict( | ||
samples_per_gpu=4, | ||
workers_per_gpu=4, | ||
train=dict( | ||
type='RepeatDataset', | ||
times=40000, | ||
dataset=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
img_dir='images/training', | ||
ann_dir='annotations/training', | ||
pipeline=train_pipeline)), | ||
val=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
img_dir='images/validation', | ||
ann_dir='annotations/validation', | ||
pipeline=test_pipeline), | ||
test=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
img_dir='images/validation', | ||
ann_dir='annotations/validation', | ||
pipeline=test_pipeline)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,59 @@ | ||
# dataset settings | ||
dataset_type = 'STAREDataset' | ||
data_root = 'data/STARE' | ||
img_norm_cfg = dict( | ||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) | ||
img_scale = (605, 700) | ||
crop_size = (128, 128) | ||
train_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict(type='LoadAnnotations'), | ||
dict(type='Resize', img_scale=img_scale, ratio_range=(0.5, 2.0)), | ||
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), | ||
dict(type='RandomFlip', prob=0.5), | ||
dict(type='PhotoMetricDistortion'), | ||
dict(type='Normalize', **img_norm_cfg), | ||
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), | ||
dict(type='DefaultFormatBundle'), | ||
dict(type='Collect', keys=['img', 'gt_semantic_seg']) | ||
] | ||
test_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict( | ||
type='MultiScaleFlipAug', | ||
img_scale=img_scale, | ||
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0], | ||
flip=False, | ||
transforms=[ | ||
dict(type='Resize', keep_ratio=True), | ||
dict(type='RandomFlip'), | ||
dict(type='Normalize', **img_norm_cfg), | ||
dict(type='ImageToTensor', keys=['img']), | ||
dict(type='Collect', keys=['img']) | ||
]) | ||
] | ||
|
||
data = dict( | ||
samples_per_gpu=4, | ||
workers_per_gpu=4, | ||
train=dict( | ||
type='RepeatDataset', | ||
times=40000, | ||
dataset=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
img_dir='images/training', | ||
ann_dir='annotations/training', | ||
pipeline=train_pipeline)), | ||
val=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
img_dir='images/validation', | ||
ann_dir='annotations/validation', | ||
pipeline=test_pipeline), | ||
test=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
img_dir='images/validation', | ||
ann_dir='annotations/validation', | ||
pipeline=test_pipeline)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,51 @@ | ||
# model settings | ||
norm_cfg = dict(type='SyncBN', requires_grad=True) | ||
model = dict( | ||
type='EncoderDecoder', | ||
pretrained=None, | ||
backbone=dict( | ||
type='UNet', | ||
in_channels=3, | ||
base_channels=64, | ||
num_stages=5, | ||
strides=(1, 1, 1, 1, 1), | ||
enc_num_convs=(2, 2, 2, 2, 2), | ||
dec_num_convs=(2, 2, 2, 2), | ||
downsamples=(True, True, True, True), | ||
enc_dilations=(1, 1, 1, 1, 1), | ||
dec_dilations=(1, 1, 1, 1), | ||
with_cp=False, | ||
conv_cfg=None, | ||
norm_cfg=norm_cfg, | ||
act_cfg=dict(type='ReLU'), | ||
upsample_cfg=dict(type='InterpConv'), | ||
norm_eval=False), | ||
decode_head=dict( | ||
type='FCNHead', | ||
in_channels=64, | ||
in_index=4, | ||
channels=64, | ||
num_convs=1, | ||
concat_input=False, | ||
dropout_ratio=0.1, | ||
num_classes=2, | ||
norm_cfg=norm_cfg, | ||
align_corners=False, | ||
loss_decode=dict( | ||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), | ||
auxiliary_head=dict( | ||
type='FCNHead', | ||
in_channels=128, | ||
in_index=3, | ||
channels=64, | ||
num_convs=1, | ||
concat_input=False, | ||
dropout_ratio=0.1, | ||
num_classes=2, | ||
norm_cfg=norm_cfg, | ||
align_corners=False, | ||
loss_decode=dict( | ||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4))) | ||
# model training and testing settings | ||
train_cfg = dict() | ||
test_cfg = dict(mode='slide', crop_size=256, stride=170) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,23 @@ | ||
# U-Net: Convolutional Networks for Biomedical Image Segmentation | ||
|
||
## Introduction | ||
|
||
```latex | ||
@inproceedings{ronneberger2015u, | ||
title={U-net: Convolutional networks for biomedical image segmentation}, | ||
author={Ronneberger, Olaf and Fischer, Philipp and Brox, Thomas}, | ||
booktitle={International Conference on Medical image computing and computer-assisted intervention}, | ||
pages={234--241}, | ||
year={2015}, | ||
organization={Springer} | ||
} | ||
``` | ||
|
||
## Results and models | ||
|
||
| Backbone | Head | Dataset | Image Size | Crop Size | Stride | Lr schd | Mem (GB) | Inf time (fps) | Dice | download | | ||
|--------|----------|----------|----------|-----------|--------:|----------|----------------|------:|--------------:|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ||
| UNet-S5-D16 | FCN | DRIVE | 584x565 | 64x64 | 42x42 | 40000 | 0.680 | - | 78.67 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_64x64_40k_drive/unet_s5-d16_64x64_40k_drive_20201223_191051-9cd163b8.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_64x64_40k_drive/unet_s5-d16_64x64_40k_drive-20201223_191051.log.json) | | ||
| UNet-S5-D16 | FCN | STARE | 605x700 | 128x128 | 85x85 | 40000 | 0.968 | - | 81.02 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_128x128_40k_stare/unet_s5-d16_128x128_40k_stare_20201223_191051-e5439846.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_128x128_40k_stare/unet_s5-d16_128x128_40k_stare-20201223_191051.log.json) | | ||
| UNet-S5-D16 | FCN | CHASE_DB1 | 960x999 | 128x128 | 85x85 | 40000 | 0.968 | - | 80.24 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_128x128_40k_chase_db1/unet_s5-d16_128x128_40k_chase_db1_20201223_191051-8b16ca0b.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_128x128_40k_chase_db1/unet_s5-d16_128x128_40k_chase_db1-20201223_191051.log.json) | | ||
| UNet-S5-D16 | FCN | HRF | 2336x3504 | 256x256 | 170x170 | 40000 | 2.525 | - | 79.45 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_256x256_40k_hrf/unet_s5-d16_256x256_40k_hrf_20201223_173724-d89cf1ed.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_256x256_40k_hrf/unet_s5-d16_256x256_40k_hrf-20201223_173724.log.json) | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
_base_ = [ | ||
'../_base_/models/unet_s5-d16.py', '../_base_/datasets/chase_db1.py', | ||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' | ||
] | ||
test_cfg = dict(crop_size=(128, 128), stride=(85, 85)) | ||
evaluation = dict(metric='mDice') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
_base_ = [ | ||
'../_base_/models/unet_s5-d16.py', '../_base_/datasets/stare.py', | ||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' | ||
] | ||
test_cfg = dict(crop_size=(128, 128), stride=(85, 85)) | ||
evaluation = dict(metric='mDice') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
_base_ = [ | ||
'../_base_/models/unet_s5-d16.py', '../_base_/datasets/hrf.py', | ||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' | ||
] | ||
test_cfg = dict(crop_size=(256, 256), stride=(170, 170)) | ||
evaluation = dict(metric='mDice') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
_base_ = [ | ||
'../_base_/models/unet_s5-d16.py', '../_base_/datasets/drive.py', | ||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' | ||
] | ||
test_cfg = dict(crop_size=(64, 64), stride=(42, 42)) | ||
evaluation = dict(metric='mDice') |