Skip to content

Commit

Permalink
Sparse attn + ops/runtime refactor + v0.3.0 (microsoft#343)
Browse files Browse the repository at this point in the history
* Sparse attn + ops/runtime refactor + v0.3.0

Co-authored-by: Arash Ashari <[email protected]>

Co-authored-by: Arash Ashari <[email protected]>
  • Loading branch information
jeffra and arashashari authored Sep 2, 2020
1 parent 838f53b commit e5bbc2e
Show file tree
Hide file tree
Showing 76 changed files with 3,889 additions and 275 deletions.
2 changes: 1 addition & 1 deletion .clang-format
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@ AllowShortLoopsOnASingleLine: true
AlwaysBreakAfterDefinitionReturnType: None
AlwaysBreakAfterReturnType: None
AlwaysBreakBeforeMultilineStrings: true
AlwaysBreakTemplateDeclarations: Yes
AlwaysBreakTemplateDeclarations: true
BinPackArguments: false
BinPackParameters: false
BraceWrapping:
Expand Down
2 changes: 1 addition & 1 deletion .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ deepspeed/git_version_info.py
# Build + installation data
build/
dist/
fused_lamb_*.so
*.so
deepspeed.egg-info/

# Website
Expand Down
5 changes: 3 additions & 2 deletions Dockerfile
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,8 @@ RUN apt-get update && \
software-properties-common \
openssh-client openssh-server \
pdsh curl sudo net-tools \
vim iputils-ping wget
vim iputils-ping wget \
llvm-9-dev cmake

##############################################################################
# Installation Latest Git
Expand Down Expand Up @@ -85,7 +86,7 @@ RUN mkdir -p ${STAGE_DIR} && \
dpkg -i ${STAGE_DIR}/nvidia-peer-memory_${NV_PEER_MEM_TAG}_all.deb

##############################################################################
## Ucomment and set SSH Daemon port
## SSH daemon port inside container cannot conflict with host OS port
###############################################################################
ENV SSH_PORT=2222
RUN cat /etc/ssh/sshd_config > ${STAGE_DIR}/sshd_config && \
Expand Down
128 changes: 78 additions & 50 deletions azure-pipelines.yml
Original file line number Diff line number Diff line change
@@ -1,49 +1,83 @@

jobs:
- job: Default
- job: DeepSpeed_Tests
timeoutInMinutes: 360
pool:
name: 'GPU_testing'
name: 'DS_testing'

strategy:
matrix:
Python36:
PyTorch12-CUDA100:
python.version: '3.6'
#Python35:
# python.version: '3.5'
#Python37:
cuda.version: '10.0'
pytorch.version: '1.2'
torchvision.version: '0.4.0'
runmodeltests: true
#PyTorch15-CUDA101:
# python.version: '3.7'
#Python38:
# python.version: '3.8'
# cuda.version: '10.1'
# pytorch.version: '1.5.0+cu101'
# torchvision.version: '0.6.0+cu101'
# runmodeltests: true
##PyTorch15-CUDA102:
# python.version: '3.7'
# cuda.version: '10.2'
# pytorch.version: '1.5'
# torchvision.version: '0.6.1'
# runmodeltests: true

variables:
conda_env: 'ds_test_py$(python.version)_cuda$(cuda.version)_pytorch$(pytorch.version)'

steps:
- task: UsePythonVersion@0
inputs:
versionSpec: '$(python.version)'
addToPath: true
architecture: 'x64'
displayName: 'Use Python $(python.version)'
# Unfortunately nvidia's nvcc_linux-64=<version> seems to install 10.1 regardless?
# Most of this complexity is a workaround to get the compiler toolchain to match the
# cudatoolkit runtime
- script: |
conda create --force --yes -n $(conda_env) python=$(python.version) cudatoolkit=$(cuda.version)
source activate $(conda_env)
conda install -q --yes conda
conda install -q --yes pip
conda install -q --yes gxx_linux-64
if [[ $(cuda.version) != "10.2" ]]; then conda install --yes -c conda-forge cudatoolkit-dev=$(cuda.version) ; fi
displayName: 'Setup environment python=$(python.version) pytorch=$(pytorch.version) cuda=$(cuda.version)'
# Manually install torch/torchvision first to enforce versioning.
- script: |
python -m pip install --upgrade pip
pip install --user -r requirements.txt
./install.sh --pip_sudo
displayName: 'Install dependencies'
source activate $(conda_env)
pip install --progress-bar=off torch==$(pytorch.version) torchvision==$(torchvision.version)
#-f https://download.pytorch.org/whl/torch_stable.html
./install.sh --local_only
#python -I basic_install_test.py
displayName: 'Install DeepSpeed'
- script: |
pre-commit run --all-files
displayName: 'Formatting checks'
source activate $(conda_env)
which python
python --version
which nvcc
nvcc --version
which deepspeed
python -c "import torch; print('torch:', torch.__version__, torch)"
python -c "import torch; print('CUDA available:', torch.cuda.is_available())"
python -c "import deepspeed; print('deepspeed:', deepspeed.__version__)"
displayName: 'Show environment'
- script: |
pytest --forked --verbose tests/unit/
source activate $(conda_env)
pytest --durations=0 --forked --verbose -x tests/unit/
displayName: 'Unit tests'
- script: |
source activate $(conda_env)
ln -s /data/Megatron-LM/data DeepSpeedExamples/Megatron-LM/
pip install --user -r DeepSpeedExamples/Megatron-LM/requirements.txt
pip install --progress-bar=off -r DeepSpeedExamples/Megatron-LM/requirements.txt
cd tests/model/
pytest -s run_sanity_check.py
rm -rf BingBertSquad/baseline
rm -rf Megatron_GPT2/baseline
pytest --durations=0 -s run_sanity_check.py
condition: and(succeeded(), eq(variables['runmodeltests'], true))
displayName: 'Model tests'
#BingBertSquad logs
Expand All @@ -52,35 +86,29 @@ jobs:
targetPath: '$(Build.SourcesDirectory)/tests/model/BingBertSquad/test/'
artifactName: BingBertSquad_logs
displayName: 'BingBertSquad log uploads'
condition: always()
condition: eq(variables['runmodeltests'], true)

# Megatron test logs
#- task: PublishPipelineArtifact@1
# inputs:
# targetPath: '$(Build.SourcesDirectory)/tests/model/Megatron_GPT2/test/'
# artifactName: Megatron_GPT2_logs
# displayName: 'Megatron GPT2 log uploads'
# condition: always()

#- task: PublishPipelineArtifact@1
# inputs:
# targetPath: '$(Build.SourcesDirectory)/tests/model/Megatron_GPT2/checkpoint_test_logs/'
# artifactName: Megatron_GPT2_checkpoint_logs
# displayName: 'Megatron GPT2 checkpoint log uploads'
# condition: always()
- job: Code_Quality_Checks
pool:
name: 'DS_testing'
variables:
conda_env: 'ds_codetest'

steps:
- script: |
conda create --force --yes -n $(conda_env) python=3.7
source activate $(conda_env)
displayName: 'Create code test environment'
#BingBert logs
#- task: PublishPipelineArtifact@1
# inputs:
# targetPath: '$(Build.SourcesDirectory)/tests/model/bing_bert/pretrain_test/'
# artifactName: BingBert_pretrain_logs
# displayName: 'BingBert pretrain logs'
# condition: always()
- script: |
source activate $(conda_env)
pip install pre-commit
pre-commit run --all-files
displayName: 'Formatting checks'
#- task: PublishPipelineArtifact@1
# inputs:
# targetPath: '$(Build.SourcesDirectory)/tests/model/bing_bert/checkpoint_test_logs/'
# artifactName: BingBert_checkpoint_logs
# displayName: 'BingBert checkpoint logs'
# condition: always()
- script: |
source activate $(conda_env)
pip install pylint
pylint --exit-zero deepspeed/
displayName: 'Code linter'
5 changes: 3 additions & 2 deletions basic_install_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@
raise err

try:
fused_lamb = importlib.import_module('deepspeed_lamb_cuda')
fused_lamb = importlib.import_module('deepspeed.ops.lamb.fused_lamb_cuda')
print('deepspeed fused lamb kernels successfully installed')
except Exception as err:
raise err
Expand All @@ -30,7 +30,8 @@
print("using new-style apex")

try:
ds_transformer = importlib.import_module('deepspeed_transformer_cuda')
ds_transformer = importlib.import_module(
'deepspeed.ops.transformer.transformer_cuda')
print('deepspeed transformer kernels successfully installed')
except Exception as err:
raise err
2 changes: 1 addition & 1 deletion bin/ds
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
#!/usr/bin/env python

from deepspeed.pt.deepspeed_run import main
from deepspeed.launcher.runner import main

if __name__ == '__main__':
main()
120 changes: 120 additions & 0 deletions csrc/sparse_attention/utils.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,120 @@
// DeepSpeed note, code taken & adapted from commit 9aa94789f13ada713af36cfd8cca2fc9a7f6b79a
// https://github.com/ptillet/torch-blocksparse/blob/master/csrc/utils.cpp

#include <torch/extension.h>
#include <string>
#include <tuple>
#include <vector>
#ifdef _OPENMP
#include <omp.h>
#endif

typedef std::vector<std::tuple<int, torch::Tensor>> ret_t;

void segment_blocks(torch::Tensor layout,
torch::Tensor idx,
torch::Tensor scratch,
int max_width,
ret_t& ret)
{
size_t H = layout.size(0);
size_t M = layout.size(1);
size_t N = layout.size(2);
torch::Tensor tmp = torch::zeros_like(layout);

auto _tmp = tmp.accessor<int, 3>();
auto _layout = layout.accessor<int, 3>();
auto _idx = idx.accessor<int, 3>();
auto _scratch = scratch.accessor<int, 3>();
std::vector<int> current(H, 0);

#ifdef _OPENMP
#pragma omp parallel for
#endif
for (size_t h = 0; h < H; h++) {
// surrounding indices
std::vector<int> ii_left(max_width, -1);
std::vector<std::vector<int>> ii_top(max_width, std::vector<int>(N, -1));

for (size_t m = 0; m < M; m++) {
for (size_t n = 0; n < N; n++) {
int v = _layout[h][m][n];
if (v == 0) continue;
int n_left = ii_left[max_width - 1];
int m_top = ii_top[max_width - 1][n];
int top = (m_top >= 0) ? _tmp[h][m_top][n] : 0;
int left = (n_left >= 0) ? _tmp[h][m][n_left] : 0;
int topleft = (m_top >= 0 && n_left >= 0) ? _tmp[h][m_top][n_left] : 0;
int width = std::min(left, std::min(top, topleft)) + 1;

// reset width if blocks cannot be
// packed together (i.e., there's a 1 "in the middle")
for (int nn = n_left + 1; nn < n; nn++)
if (ii_top[max_width - 1][nn] > ii_top[max_width - 1][n]) width = 1;
_tmp[h][m][n] = width;

// update n_left ring buffer
for (int k = 0; k < max_width - 1; k++) ii_left[k] = ii_left[k + 1];
ii_left[max_width - 1] = n;

// update ii_top ring buffer
for (int k = 0; k < max_width - 1; k++) ii_top[k][n] = ii_top[k + 1][n];
ii_top[max_width - 1][n] = m;

// block is too small -- skip
if (width != max_width) continue;

// retained blocks are set to zeros
for (size_t km = 0; km < max_width; km++)
for (size_t kn = 0; kn < max_width; kn++) {
int mm = ii_top[km][n];
int nn = ii_left[kn];
if (mm < 0 || nn < 0) continue;
_layout[h][mm][nn] = 0;
_tmp[h][mm][nn] = 0;
_scratch[h][current[h]][0] = (int)h;
_scratch[h][current[h]][1] = (int)mm;
_scratch[h][current[h]][2] = (int)nn;
_scratch[h][current[h]][3] = _idx[h][mm][nn];
current[h]++;
}
}
}
}
std::vector<torch::Tensor> to_cat;
for (size_t h = 0; h < H; h++)
if (current[h] > 0) to_cat.push_back(scratch[h].slice(0, 0, current[h]));
if (!to_cat.empty()) ret.push_back({max_width, torch::cat(to_cat)});
}

ret_t sdd_segment(torch::Tensor layout, int start_width)
{
ret_t ret;

// block index
torch::Tensor idx = torch::zeros_like(layout);
int current = 0;
size_t H = layout.size(0);
size_t M = layout.size(1);
size_t N = layout.size(2);
auto _layout = layout.accessor<int, 3>();
auto _idx = idx.accessor<int, 3>();
for (size_t h = 0; h < H; h++)
for (size_t m = 0; m < M; m++)
for (size_t n = 0; n < N; n++) {
if (_layout[h][m][n] == 0) continue;
_idx[h][m][n] = current++;
}

// scratch memory
torch::Tensor scratch = torch::empty({H, layout.sum().item<int>(), 4}, layout.dtype());

for (int max_width = start_width; max_width > 0; max_width /= 2)
segment_blocks(layout, idx, scratch, max_width, ret);
return ret;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
{
m.def("sdd_segment", &sdd_segment, "SDD segmentation handler");
}
Loading

0 comments on commit e5bbc2e

Please sign in to comment.