Skip to content

Continuously monitor your AWS services for configurations that can lead to degradation of confidentiality, integrity or availability. All results will be sent to Security Hub for further aggregation and analysis.

License

Notifications You must be signed in to change notification settings

bleemb/ElectricEye

 
 

Repository files navigation

ElectricEye


Continuously monitor your AWS services for configurations that can lead to degradation of confidentiality, integrity or availability. All results will be sent to Security Hub for further aggregation and analysis.

Up here in space
I'm looking down on you
My lasers trace
Everything you do
Judas Priest, 1982

DepShield Badge

Table of Contents


Synopsis


  • 100% native Security Hub integration & 100% serverless with full CloudFormation & Terraform support in AWS Commercial and GovCloud Regions
  • 220+ security & best practice detections including services not covered by Security Hub/Config (AppStream, Cognito, EKS, ECR, DocDB, etc.)
  • Detections aligned to NIST CSF, NIST 800-53, AICPA TSC and ISO 27001:2013 using the Compliance.RelatedRequirements field.
  • 60+ multi-account SOAR playbooks
  • AWS & 3rd Party Integrations: DisruptOps, Config Recorder, Pagerduty, Slack, ServiceNow Incident Management, Jira, Azure DevOps, Shodan and Microsoft Teams

Description


ElectricEye is a set of Python scripts (affectionately called Auditors) that continuously monitor your AWS infrastructure looking for configurations related to confidentiality, integrity and availability that do not align with AWS best practices. All findings from these scans will be sent to AWS Security Hub where you can perform basic correlation against other AWS and 3rd Party services that send findings to Security Hub (optionally you can send findings to DisruptOps, CSV or JSON). Security Hub also provides a centralized view from which account owners and other responsible parties can view and take action on findings. ElectricEye supports both AWS commercial and GovCloud Regions.

Note: If you would like to use the "classic" version of ElectricEye it is available in this branch, however, it will not include any new auditors for services such as QLDB, RAM, etc. Some screenshots may not work correctly due to the linking, sorry about that.

ElectricEye runs on AWS Fargate, which is a serverless container orchestration service, you can also run it via a CLI anywhere you have the required dependencies installed. On a schedule, Fargate will download all of the auditor scripts from a S3 bucket, run the checks and send results to Security Hub. All infrastructure will be deployed via CloudFormation or Terraform to help you apply this solution to many accounts and/or regions. All findings (passed or failed) will contain AWS documentation references in the Remediation.Recommendation section of the ASFF (and the Remediation section of the Security Hub UI) to further educate yourself and others on.

ElectricEye comes with several add-on modules to extend the core model which provides dozens of detection-based controls. ElectricEye-Response provides a multi-account response and remediation platform (also known as SOAR), ElectricEye-ChatOps integrates with Slack and ElectricEye-Reports integrates with QuickSight (experimental) and the Config-Deletion-Pruner will auto-archive findings as Config-supported resources are deleted. All add-ons are supported by both CloudFormation and Terraform and can also be used independently of the core module itself.

Personas who can make use of this tool are DevOps/DevSecOps engineers, SecOps analysts, Cloud Center-of-Excellence personnel, Site Reliability Engineers (SREs), Internal Audit and/or Compliance Analysts.

Solution Architecture


Architecture

  1. A time-based CloudWatch Event runs ElectricEye every 12 hours (default value).

  2. The ElectricEye Task will pull the Docker image from Elastic Container Registry (ECR).

  3. Systems Manager Parameter Store passes the bucket name from which Auditors are downloaded. Optionally, ElectricEye will retrieve you API key(s) for DisruptOps and Shodan, if those integrations are configured.

  4. The ElectricEye task will execute all Auditors to scan your AWS infrastructure and deliver both passed and failed findings to Security Hub. Note: ElectricEye will query the Shodan APIs to see if there is a match against select internet-facing AWS resources if configured.

  5. If configured, ElectricEye will send findings to DisruptOps. DisruptOps is also integrated with Security Hub and can optionally enforce guardrails and orchestrate security automation from within the platform.

Refer to the Supported Services and Checks section for an up-to-date list of supported services and checks performed by the Auditors.

Setting Up


These steps are split across their relevant sections. All CLI commands are executed from an Ubuntu 18.04LTS Cloud9 IDE, modify them to fit your OS.

Note 1: If you do use Cloud9, navigate to Settings (represented by a Gear icon) > AWS Settings and unmark the selection for AWS managed temporary credentials (move the toggle to your left-hand side) as shown below. If you do not, you instance profile will not apply properly. Cloud9TempCred

Note 2: Ensure AWS Security Hub is enabled in the region you are attempting to run ElectricEye

Note 3: If you have never used ECS before you'll likely run into a problem with the service-linked role (SLR), or lack thereof, and you should follow the instructions here to have it created first

Build and push the Docker image

Note: You must have permissions to push images to ECR before performing this step. These permissions are not included in the instance profile example.

  1. Update your machine and clone this repository
sudo apt update
sudo apt upgrade -y
sudo apt install -y unzip awscli docker.ce python3 python3-pip
pip3 install boto3
git clone https://github.com/jonrau1/ElectricEye.git
  1. Create an ECR Repository with the AWS CLI
aws ecr create-repository --repository-name <REPO_NAME>
  1. Build and push the ElectricEye Docker image. Be sure to replace the values for your region, Account ID and name of the ECR repository Note: If you are in GovCloud these commands are likely very different, please review for consistency (and open a PR if there is a better option for GovCloud)
cd ElectricEye
aws ecr get-login-password --region <AWS_REGION> | sudo docker login --username AWS --password-stdin <ACCOUNT_ID>.dkr.ecr.<AWS_REGION>.amazonaws.com

Note: If you are using AWS CLI v1 use the following in place of the line above sudo $(aws ecr get-login --no-include-email --region <AWS_REGION>)

sudo docker build -t <REPO_NAME> .
sudo docker tag <REPO_NAME>:latest <ACCOUNT_ID>.dkr.ecr.<AWS_REGION>.amazonaws.com/<REPO_NAME>:latest
sudo docker push <ACCOUNT_ID>.dkr.ecr.<AWS_REGION>.amazonaws.com/<REPO_NAME>:latest
  1. Navigate to the ECR console and copy the URI of your Docker image. It will be in the format of <ACCOUNT_ID>.dkr.ecr.<AWS_REGION.amazonaws.com/<REPO_NAME>:latest. Save this as you will need it when configuring Terraform or CloudFormation.

(OPTIONAL) Setup Shodan.io API Key


This is an optional step to setup a Shodan.io API key to determine if your internet-facing resources have been indexed. This is not an exact science as a lot of abstracted services (ES, RDS, ELB) share IP space with other resources and AWS addresses (non-EIP / BYOIP) are always change (such as when you have an EC2 instance shutoff for a prolonged period of time). You may end up having indexed resources that were indexed when someone else was using the IP space, you should still review it either way just to make sure.

  1. Create a Shodan account and retrieve your Shodan.io API Key from here.

  2. Create a Systems Manager Parameter Store SecureString parameter for this API key: aws ssm put-parameter --name electriceye-shodan-api-key --description 'Shodan.io API Key' --type SecureString --value <API-KEY-HERE>

In both the Terraform config files and CloudFormation templates the value for this key is prepopulated with the value placeholder, overwrite them with this parameter you just created to be able to use the Shodan checks.

(OPTIONAL) Setup DisruptOps Client Id and API Key


This is an optional step to setup for sending findings to DisruptOps.

  1. Create a Systems Manager Parameter Store SecureString parameter for the client id: `aws ssm put-parameter --name dops-client-id --description 'DisruptOps client id' --type SecureString --value

  2. Create a Systems Manager Parameter Store SecureString parameter for this API key: aws ssm put-parameter --name dops-api-key --description 'DisruptOps api key' --type SecureString --value <API-KEY-HERE>

In both the Terraform config files and CloudFormation templates the value for this key is prepopulated with the value placeholder, overwrite them with this parameter you just created to be able to use DisruptOps.

Setup baseline infrastructure via Terraform


Before starting attach this IAM policy to your Instance Profile (if you are using Cloud9 or EC2).

Important Note: The policy for the instance profile is highly dangerous given the S3, VPC and IAM related permissions given to it, Terraform needs a wide swath of CRUD permissions and even permissions for things that aren't deployed by the config files. For rolling ElectricEye out in a Production or an otherwise highly regulated environment, consider adding IAM Condition Keys, using CI/CD (no human access) and backing up your Terraform state files to a S3 backend to add guardrails around this deployment. I would avoid adding these permissions to an IAM user, and any roles that use this should only be assumable by where you are deploying it from, consider adding other Condition Keys to the Trust Policy.

In this stage we will install and deploy the ElectricEye infrastructure via Terraform. To securely backup your state file, you should explore the usage of a S3 backend, this is also described in this AWS Security Blog post.

  1. Install the dependencies for Terraform.
wget https://releases.hashicorp.com/terraform/0.14.4/terraform_0.14.4_linux_amd64.zip
unzip terraform_0.14.4_linux_amd64.zip
sudo mv terraform /usr/local/bin/
terraform --version
  1. Change directories and modify the variables.tf config file to include the URI of your Docker image and the name of your ECR Repository as shown in the screenshot below. Optionally replace the values of the Shodan API Key, DisruptOps Client Id, and DisruptOps API Key parameters with yours if you created them in the previous optional steps.
cd terraform-config-files
nano variables.tf

Variables.tf modification

  1. Initialize, plan and apply your state with Terraform, this step should not take too long.
terraform init
terraform plan
terraform apply -auto-approve
  1. Navigate to the S3 console and locate the name of the S3 bucket created by Terraform for the next step. It should be in the format of electriceye-artifact-bucket-(AWS_REGION)-(ACCOUNT-NUMBER) if you left everything else default in variables.tf

  2. Navigate to the auditors directory and upload the code base to your S3 bucket

cd -
cd eeauditor/auditors/aws
aws s3 sync . s3://<your-bucket-name>
  1. Navigate to the insights directory and execute the Python script to have Security Hub Insights created. Insights are saved searches that can also be used as quick-view dashboards (though nowhere near the sophistication of a QuickSight dashboard)
cd -
cd insights
python3 electriceye-insights.py

In the next stage you will launch the ElectricEye ECS task manually because after Terraform deploys this solution it will automatically run, and it will fail due to a lack of Auditor scripts in the S3 bucket.

Setup baseline infrastructure via AWS CloudFormation


  1. Download the CloudFormation template and create a Stack. Refer to the Get Started section of the AWS CloudFormation User Guide if you have not done this before.

  2. Enter the URI of the Docker image in the space for the parameter ElectricEyeContainerInfo. Leave all other parameters as the default value, unless you already used 10.77.0.0/16 as the CIDR for one of your VPCs and plan to attach this VPC to your T-Gateway. Optionally replace the values of the Shodan API Key, DisruptOps Client Id, and DisruptOps API Key parameters with yours if you created them in the previous optional steps and then create your stack. Run task dropdown

NOTE: The Terraform implementation applies a resource-based repository policy that only allows access to the ElectricEye ECS IAM Roles (Execution & Task), if you want to apply something similar for CloudFormation you will need to issue the following ECR CLI command:

aws ecr set-repository-policy \
    --repository-name <ECR_REPO_NAME> \
    --policy-text file://my-policy.json

You can create my-policy.json with the below example, replace the values for <Task_Execution_Role_ARN> and <Task_Role.arn> as needed.

{
  "Version": "2008-10-17",
  "Statement": [
    {
      "Sid": "new statement",
      "Effect": "Allow",
      "Principal": {
        "AWS": [
          "<Task_Execution_Role_ARN>",
          "<Task_Role.arn>"
        ],
        "Service": "ecs-tasks.amazonaws.com"
      },
      "Action": [
        "ecr:BatchCheckLayerAvailability",
        "ecr:BatchGetImage",
        "ecr:DescribeImages",
        "ecr:DescribeRepositories",
        "ecr:GetAuthorizationToken",
        "ecr:GetDownloadUrlForLayer",
        "ecr:GetRepositoryPolicy",
        "ecr:ListImages"
      ]
    }
  ]
}
  1. Navigate to the S3 console and locate the name of the S3 bucket created by CloudFormation for the next step. It should be in the format of electric-eye-artifact-bucket--(AWS_REGION)-(ACCOUNT-NUMBER)

  2. Navigate to the auditors directory and upload the code base to your S3 bucket

cd -
cd eeauditor/auditors/aws
aws s3 sync . s3://<your-bucket-name>
  1. Navigate to the insights directory and execute the Python script to have Security Hub Insights created. Insights are saved searches that can also be used as quick-view dashboards (though nowhere near the sophistication of a QuickSight dashboard)
cd -
cd insights
python3 electriceye-insights.py

Manually execute the ElectricEye ECS Task (you only need to do this once)


In this stage we will use the console the manually run the ElectricEye ECS task.

  1. Navigate to the ECS Console, select Task Definitions and toggle the electric-eye task definition. Select the Actions dropdown menu and select Run Task as shown in the below screenshot.

Run task dropdown

  1. Configure the following settings in the Run Task screen as shown in the screenshot below
  • Launch type: Fargate
  • Platform version: LATEST
  • Cluster: electric-eye-vpc-ecs-cluster (unless named otherwise)
  • Number of tasks: 1
  • Task group: LEAVE THIS BLANK
  • Cluster VPC: electric-eye-vpc
  • Subnets: any eletric eye Subnet
  • Security groups: electric-eye-vpc-sec-group (you will need to select Modify and choose from another menu)
  • Auto-assign public IP: ENABLED

ECS task menu

  1. Select Run task, in the next screen select the hyperlink in the Task column and select the Logs tab to view the result of the logs. Note logs coming to this screen may be delayed, and you may have several auditors report failures due to the lack of in-scope resources.

Running locally


  1. Navigate to the IAM console and click on Policies under Access management. Select Create policy and under the JSON tab, copy and paste the contents Instance Profile IAM Policy. Click Review policy, create a name, and then click Create policy.

  2. Have python 3 and pip installed and setup virtualenv

pip3 install virtualenv --user
virtualenv .venv
  1. This will create a virtualenv directory called .venv which needs to be activated
#For macOS and Linux
. .venv/bin/activate

#For Windows
.venv\scripts\activate
  1. Install all dependencies
pip3 install -r requirements.txt
  1. Run the controller
python3 eeauditor/controller.py

Add the --help option for info on running individual checks and auditors and different outputs options.

Supported Services and Checks


These are the following services and checks perform by each Auditor. There are currently 229 checks supported across 72 AWS services / components using 56 Auditors. There are currently 62 supported response and remediation Playbooks with coverage across 32 AWS services / components supported by ElectricEye-Response.

Regarding Shield Advanced checks: You must be subscribed to Shield Advanced, be on Business/Enterprise Support and be in us-east-1 to perform all checks. The Shield Adv API only lives in us-east-1, and to have the DRT look at your account you need Biz/Ent support, hence the pre-reqs.

Auditor File Name AWS Service Auditor Scan Description
Amazon_APIGW_Auditor.py API Gateway Stage Are stage metrics enabled
Amazon_APIGW_Auditor.py API Gateway Stage Is stage API logging enabled
Amazon_APIGW_Auditor.py API Gateway Stage Is stage caching enabled
Amazon_APIGW_Auditor.py API Gateway Stage Is cache encryption enabled
Amazon_APIGW_Auditor.py API Gateway Stage Is stage xray tracing configured
Amazon_APIGW_Auditor.py API Gateway Stage Is the stage protected by a WAF WACL
Amazon_AppStream_Auditor.py AppStream 2.0 (Fleets) Do Fleets allow Default
Internet Access
Amazon_AppStream_Auditor.py AppStream 2.0 (Images) Are Images Public
Amazon_AppStream_Auditor.py AppStream 2.0 (Users) Are users reported as Compromised
Amazon_AppStream_Auditor.py AppStream 2.0 (Users) Do users use SAML authentication
Amazon_CloudFront_Auditor.py CloudFront Distribution Does distribution have trusted
signers with key pairs
Amazon_CognitoIdP_Auditor.py Cognito Identity Pool Does the Password policy comply
with AWS CIS Foundations Benchmark
Amazon_CognitoIdP_Auditor.py Cognito Identity Pool Cognito Temporary Password Age
Amazon_CognitoIdP_Auditor.py Cognito Identity Pool Does the Identity pool enforce MFA
Amazon_DocumentDB_Auditor.py DocumentDB Instance Are Instances publicly accessible
Amazon_DocumentDB_Auditor.py DocumentDB Instance Are Instance encrypted
Amazon_DocumentDB_Auditor.py DocumentDB Instance Is audit logging enabled
Amazon_DocumentDB_Auditor.py DocumentDB Cluster Is the Cluster configured for HA
Amazon_DocumentDB_Auditor.py DocumentDB Cluster Is the Cluster deletion protected
Amazon_DocumentDB_Auditor.py DocumentDB Cluster Is cluster audit logging on
Amazon_DocumentDB_Auditor.py DocumentDB Cluster Is cluster TLS enforcement on
Amazon_DocumentDB_Auditor.py DocDB Snapshot Are docdb cluster snapshots encrypted
Amazon_DocumentDB_Auditor.py DocDB Snapshot Are docdb cluster snapshots public
Amazon_DynamoDB_Auditor.py DynamoDB Table Do tables use KMS CMK for encryption
Amazon_DynamoDB_Auditor.py DynamoDB Table Do tables have PITR enabled
Amazon_DynamoDB_Auditor.py DynamoDB Table Do tables have TTL enabled
Amazon_EBS_Auditor.py EBS Volume Is the Volume attached
Amazon_EBS_Auditor.py EBS Volume Is the Volume configured to be
deleted on instance termination
Amazon_EBS_Auditor.py EBS Volume Is the Volume encrypted
Amazon_EBS_Auditor.py EBS Snapshot Is the Snapshot encrypted
Amazon_EBS_Auditor.py EBS Snapshot Is the Snapshot public
Amazon_EBS_Auditor.py Account Is account level encryption by
default enabled
Amazon_EC2_Auditor.py EC2 Instance Is IMDSv2 enabled
Amazon_EC2_Image_Builder_Auditor.py Image Builder Are pipeline tests enabled
Amazon_EC2_Image_Builder_Auditor.py Image Builder Is EBS encrypted
Amazon_EC2_Security_Group_Auditor.py Security Group Are all ports (-1) open to the internet
Amazon_EC2_Security_Group_Auditor.py Security Group Is FTP (tcp20-21) open to the internet
Amazon_EC2_Security_Group_Auditor.py Security Group Is TelNet (tcp23) open to the internet
Amazon_EC2_Security_Group_Auditor.py Security Group Is WSDCOM-RPC (tcp135) open to the
internet
Amazon_EC2_Security_Group_Auditor.py Security Group Is SMB (tcp445) open to the internet
Amazon_EC2_Security_Group_Auditor.py Security Group Is MSSQL (tcp1433) open to the internet
Amazon_EC2_Security_Group_Auditor.py Security Group Is OracleDB (tcp1521) open to the internet
Amazon_EC2_Security_Group_Auditor.py Security Group Is MySQL/MariaDB (tcp3306) open to
the internet
Amazon_EC2_Security_Group_Auditor.py Security Group Is RDP (tcp3389) open to the internet
Amazon_EC2_Security_Group_Auditor.py Security Group Is PostgreSQL (tcp5432) open to the
internet
Amazon_EC2_Security_Group_Auditor.py Security Group Is Kibana (tcp5601) open to the internet
Amazon_EC2_Security_Group_Auditor.py Security Group Is Redis (tcp6379) open to the internet
Amazon_EC2_Security_Group_Auditor.py Security Group Is Splunkd (tcp8089) open to the internet
Amazon_EC2_Security_Group_Auditor.py Security Group Is Elasticsearch (tcp9200) open to
the internet
Amazon_EC2_Security_Group_Auditor.py Security Group Is Elasticsearch (tcp9300) open to
the internet
Amazon_EC2_Security_Group_Auditor.py Security Group Is Memcached (udp11211) open to the
internet
Amazon_EC2_Security_Group_Auditor.py Security Group Is Redshift (tcp5439) open to the internet
Amazon_EC2_Security_Group_Auditor.py Security Group Is DocDB (tcp27017) open to the internet
Amazon_EC2_Security_Group_Auditor.py Security Group Is Cassandra (tcp9142) open to the internet
Amazon_EC2_Security_Group_Auditor.py Security Group Is Kafka (tcp9092) open to the internet
Amazon_EC2_SSM_Auditor.py EC2 Instance Is the instance managed by SSM
Amazon_EC2_SSM_Auditor.py EC2 Instance Does the instance have a successful
SSM association
Amazon_EC2_SSM_Auditor.py EC2 Instance Is the SSM Agent up to date
Amazon_EC2_SSM_Auditor.py EC2 Instance Is the Patch status up to date
Amazon_ECR_Auditor.py ECR Repository Does the repository support
scan-on-push
Amazon_ECR_Auditor.py ECR Repository Is there an image lifecycle policy
Amazon_ECR_Auditor.py ECR Repository Is there a repo access policy
Amazon_ECR_Auditor.py Image (Container) Does the latest container have any vulns
Amazon_ECS_Auditor.py ECS Cluster Is container insights enabled
Amazon_ECS_Auditor.py ECS Cluster Is a default cluster provider configured
Amazon_EFS_Auditor.py EFS File System Are file systems encrypted
Amazon_EKS_Auditor.py EKS Cluster Is the API Server publicly
accessible
Amazon_EKS_Auditor.py EKS Cluster Is K8s version 1.16 or 1.17 used
Amazon_EKS_Auditor.py EKS Cluster Are auth or audit logs enabled
Amazon_Elasticache_Redis_Auditor.py Elasticache Redis Cluster Is an AUTH Token used
Amazon_Elasticache_Redis_Auditor.py Elasticache Redis Cluster Is the cluster encrypted at rest
Amazon_Elasticache_Redis_Auditor.py Elasticache Redis Cluster Does the cluster encrypt in transit
Amazon_ElasticsearchService_Auditor.py Elasticsearch Domain Are dedicated masters used
Amazon_ElasticsearchService_Auditor.py Elasticsearch Domain Is Cognito auth used
Amazon_ElasticsearchService_Auditor.py Elasticsearch Domain Is encryption at rest used
Amazon_ElasticsearchService_Auditor.py Elasticsearch Domain Is Node2Node encryption used
Amazon_ElasticsearchService_Auditor.py Elasticsearch Domain Is HTTPS-only enforced
Amazon_ElasticsearchService_Auditor.py Elasticsearch Domain Is a TLS 1.2 policy used
Amazon_ElasticsearchService_Auditor.py Elasticsearch Domain Are there available version updates
Amazon_ELB_Auditor.py ELB (Classic Load Balancer) Do internet facing ELBs have a
secure listener
Amazon_ELB_Auditor.py ELB (Classic Load Balancer) Do secure listeners enforce TLS 1.2
Amazon_ELB_Auditor.py ELB (Classic Load Balancer) Is cross zone load balancing enabled
Amazon_ELB_Auditor.py ELB (Classic Load Balancer) Is connection draining enabled
Amazon_ELB_Auditor.py ELB (Classic Load Balancer) Is access logging enabled
Amazon_ELBv2_Auditor.py ELBv2 (ALB) Is access logging enabled for ALBs
Amazon_ELBv2_Auditor.py ELBv2 (ALB/NLB) Is deletion protection enabled
Amazon_ELBv2_Auditor.py ELBv2 (ALB/NLB) Do internet facing ELBs have a
secure listener
Amazon_ELBv2_Auditor.py ELBv2 (ALB/NLB) Do secure listeners enforce TLS 1.2
Amazon_ELBv2_Auditor.py ELBv2 (ALB/NLB) Are invalid HTTP headers dropped
Amazon_ELBv2_Auditor.py ELBv2 (NLB) Do NLBs with TLS listeners have access
logging enabled
Amazon_EMR_Auditor.py EMR Cluster Do clusters have a sec configuration attached
Amazon_EMR_Auditor.py EMR Cluster Do cluster sec configs enforce encryption
in transit
Amazon_EMR_Auditor.py EMR Cluster Do cluster sec configs enforce encryption
at rest for EMRFS
Amazon_EMR_Auditor.py EMR Cluster Do cluster sec configs enforce encryption at
rest for EBS
Amazon_EMR_Auditor.py EMR Cluster Do cluster sec configs enforce Kerberos
authN
Amazon_EMR_Auditor.py EMR Cluster Is cluster termination protection enabled
Amazon_EMR_Auditor.py EMR Cluster Is cluster logging enabled
Amazon_EMR_Auditor.py AWS Account Is EMR public SG block configured for the
Account in the region
Amazon_Kinesis_Analytics_Auditor.py Kinesis analytics application Does application log to CloudWatch
Amazon_Kinesis_Data_Streams_Auditor.py Kinesis data stream Is stream encryption enabled
Amazon_Kinesis_Data_Streams_Auditor.py Kinesis data stream Is enhanced monitoring enabled
Amazon_Kinesis_Firehose_Auditor.py Firehose delivery stream Is delivery stream encryption enabled
Amazon_Managed_Blockchain_Auditor.py Fabric peer node Are chaincode logs enabled
Amazon_Managed_Blockchain_Auditor.py Fabric peer node Are peer node logs enabled
Amazon_Managed_Blockchain_Auditor.py Fabric member Are member CA logs enabled
Amazon_MQ_Auditor.py Amazon MQ message broker Message brokers should be encrypted with
customer-managed KMS CMKs
Amazon_MQ_Auditor.py Amazon MQ message broker Message brokers should have audit logging
enabled
Amazon_MQ_Auditor.py Amazon MQ message broker Message brokers should have general logging
enabled
Amazon_MQ_Auditor.py Amazon MQ message broker Message broker should not be publicly
accessible
Amazon_MQ_Auditor.py Amazon MQ message broker Message brokers should be configured to auto
upgrade to the latest minor version
Amazon_MSK_Auditor.py MSK Cluster Is inter-cluster encryption used
Amazon_MSK_Auditor.py MSK Cluster Is client-broker communications
TLS-only
Amazon_MSK_Auditor.py MSK Cluster Is enhanced monitoring used
Amazon_MSK_Auditor.py MSK Cluster Is Private CA TLS auth used
Amazon_Neptune_Auditor.py Neptune instance Is Neptune configured for HA
Amazon_Neptune_Auditor.py Neptune instance Is Neptune storage encrypted
Amazon_Neptune_Auditor.py Neptune instance Does Neptune use IAM DB Auth
Amazon_Neptune_Auditor.py Neptune cluster Is SSL connection enforced
Amazon_Neptune_Auditor.py Neptune cluster Is audit logging enabled
Amazon_QLDB_Auditor.py QLDB Ledger Does ledger have deletion protection
Amazon_QLDB_Auditor.py QLDB Export Is export encryption enabled
Amazon_RDS_Auditor.py RDS DB Instance Is HA configured
Amazon_RDS_Auditor.py RDS DB Instance Are DB instances publicly accessible
Amazon_RDS_Auditor.py RDS DB Instance Is DB storage encrypted
Amazon_RDS_Auditor.py RDS DB Instance Do supported DBs use IAM Authentication
Amazon_RDS_Auditor.py RDS DB Instance Are supported DBs joined to a domain
Amazon_RDS_Auditor.py RDS DB Instance Is performance insights enabled
Amazon_RDS_Auditor.py RDS DB Instance Is deletion protection enabled
Amazon_RDS_Auditor.py RDS DB Instance Is database CloudWatch logging enabled
Amazon_RDS_Auditor.py RDS Snapshot Are snapshots encrypted
Amazon_RDS_Auditor.py RDS Snapshot Are snapshots public
Amazon_Redshift_Auditor.py Redshift cluster Is the cluster publicly accessible
Amazon_Redshift_Auditor.py Redshift cluster Is the cluster encrypted
Amazon_Redshift_Auditor.py Redshift cluster Is enhanced VPC routing enabled
Amazon_Redshift_Auditor.py Redshift cluster Is cluster audit logging enabled
Amazon_S3_Auditor.py S3 Bucket Is bucket encryption enabled
Amazon_S3_Auditor.py S3 Bucket Is a bucket lifecycle enabled
Amazon_S3_Auditor.py S3 Bucket Is bucket versioning enabled
Amazon_S3_Auditor.py S3 Bucket Does the bucket policy allow public access
Amazon_S3_Auditor.py S3 Bucket Does the bucket have a policy
Amazon_S3_Auditor.py S3 Bucket Is server access logging enabled
Amazon_S3_Auditor.py Account Is account level public access block
configured
Amazon_SageMaker_Auditor.py SageMaker Notebook Is notebook encryption enabled
Amazon_SageMaker_Auditor.py SageMaker Notebook Is notebook direct internet access
enabled
Amazon_SageMaker_Auditor.py SageMaker Notebook Is the notebook in a vpc
Amazon_SageMaker_Auditor.py SageMaker Endpoint Is endpoint encryption enabled
Amazon_SageMaker_Auditor.py SageMaker Model Is model network isolation enabled
Amazon_Shield_Advanced_Auditor.py Route53 Hosted Zone Are Rt53 hosted zones protected by
Shield Advanced
Amazon_Shield_Advanced_Auditor.py Classic Load Balancer Are CLBs protected by Shield Adv
Amazon_Shield_Advanced_Auditor.py ELBv2 (ALB/NLB) Are ELBv2s protected by Shield Adv
Amazon_Shield_Advanced_Auditor.py Elastic IP Are EIPs protected by Shield Adv
Amazon_Shield_Advanced_Auditor.py CloudFront Distribution Are CF Distros protected by Shield Adv
Amazon_Shield_Advanced_Auditor.py Account (DRT IAM Role) Does the DRT have account authz via IAM
role
Amazon_Shield_Advanced_Auditor.py Account (DRT S3 Access) Does the DRT have access to WAF logs
S3 buckets
Amazon_Shield_Advanced_Auditor.py Account (Shield subscription) Is Shield Adv subscription on auto
renew
Amazon_SNS_Auditor.py SNS Topic Is the topic encrypted
Amazon_SNS_Auditor.py SNS Topic Does the topic have plaintext (HTTP)
subscriptions
Amazon_SNS_Auditor.py SNS Topic Does the topic allow public access
Amazon_SNS_Auditor.py SNS Topic Does the topic allow cross-account access
Amazon_SQS_Auditor.py SQS Queue Are there old messages
Amazon_VPC_Auditor.py VPC Is the default VPC out and about
Amazon_VPC_Auditor.py VPC Is flow logging enabled
Amazon_WorkSpaces_Auditor.py Workspace Is user volume encrypted
Amazon_WorkSpaces_Auditor.py Workspace Is root volume encrypted
Amazon_WorkSpaces_Auditor.py Workspace Is running mode set to auto-off
Amazon_WorkSpaces_Auditor.py DS Directory Does directory allow default internet
access
AMI_Auditor.py Amazon Machine Image (AMI) Are owned AMIs public
AMI_Auditor.py Amazon Machine Image (AMI) Are owned AMIs encrypted
AWS_AppMesh_Auditor.py App Mesh mesh Does the mesh egress filter DROP_ALL
AWS_AppMesh_Auditor.py App Mesh virtual node Does the backend default client policy
enforce TLS
AWS_AppMesh_Auditor.py App Mesh virtual node Do virtual node backends have STRICT TLS mode
configured for inbound connections
AWS_AppMesh_Auditor.py App Mesh virtual node Do virtual nodes have an HTTP access log
location defined
AWS_Backup_Auditor.py EC2 Instance Are EC2 instances backed up
AWS_Backup_Auditor.py EBS Volume Are EBS volumes backed up
AWS_Backup_Auditor.py DynamoDB tables Are DynamoDB tables backed up
AWS_Backup_Auditor.py RDS DB Instance Are RDS DB instances backed up
AWS_Backup_Auditor.py EFS File System Are EFS file systems backed up
AWS_CloudFormation_Auditor.py CloudFormation Stack Is drift detection enabled
AWS_CloudFormation_Auditor.py CloudFormation Stack Are stacks monitored
AWS_CloudTrail_Auditor.py CloudTrail Is the trail multi-region
AWS_CloudTrail_Auditor.py CloudTrail Does the trail send logs to CWL
AWS_CloudTrail_Auditor.py CloudTrail Is the trail encrypted by KMS
AWS_CloudTrail_Auditor.py CloudTrail Are global/management events logged
AWS_CloudTrail_Auditor.py CloudTrail Is log file validation enabled
AWS_CodeBuild_Auditor.py CodeBuild project Is artifact encryption enabled
AWS_CodeBuild_Auditor.py CodeBuild project Is Insecure SSL enabled
AWS_CodeBuild_Auditor.py CodeBuild project Are plaintext environmental
variables used
AWS_CodeBuild_Auditor.py CodeBuild project Is S3 logging encryption enabled
AWS_CodeBuild_Auditor.py CodeBuild project Is CloudWatch logging enabled
AWS_Directory_Service_Auditor.py DS Directory Is RADIUS enabled
AWS_Directory_Service_Auditor.py DS Directory Is CloudWatch log forwarding enabled
AWS_DMS_Auditor.py DMS Replication Instance Are DMS instances publicly accessible
AWS_DMS_Auditor.py DMS Replication Instance Is DMS multi-az configured
AWS_DMS_Auditor.py DMS Replication Instance Are minor version updates configured
AWS_Global_Accelerator_Auditor.py Global Accelerator Endpoint Is the endpoint healthy
AWS_Global_Accelerator_Auditor.py Global Accelerator Accelerator Is flow logs enabled for accelerator
AWS_Glue_Auditor.py Glue Crawler Is S3 encryption configured for the crawler
AWS_Glue_Auditor.py Glue Crawler Is CWL encryption configured for the crawler
AWS_Glue_Auditor.py Glue Crawler Is job bookmark encryption configured for the
crawler
AWS_Glue_Auditor.py Glue Data Catalog Is data catalog encryption configured
AWS_Glue_Auditor.py Glue Data Catalog Is connection password encryption configured
AWS_Glue_Auditor.py Glue Data Catalog Is a resource policy configured
AWS_IAM_Auditor.py IAM Access Key Are access keys over 90 days old
AWS_IAM_Auditor.py IAM User Do users have permissions boundaries
AWS_IAM_Auditor.py IAM User Do users have MFA
AWS_IAM_Auditor.py IAM User Do users have in-line policies attached
AWS_IAM_Auditor.py IAM User Do users have managed policies attached
AWS_IAM_Auditor.py Password policy (Account) Does the IAM password policy meet or exceed
AWS CIS Foundations Benchmark standards
AWS_IAM_Auditor.py Server certs (Account) Are they any Server certificates stored by IAM
AWS_KMS_Auditor.py KMS key Is key rotation enabled
AWS_KMS_Auditor.py KMS key Does the key allow public access
AWS_Lambda_Auditor.py Lambda function Has function been used or updated in the last
30 days
AWS_License_Manager_Auditor License Manager configuration Do LM configurations enforce a hard limit on
license consumption
AWS_RAM_Auditor.py RAM Resource Share Is the resource share status not failed
AWS_RAM_Auditor.py RAM Resource Share Does the resource allow external principals
AWS_Secrets_Manager_Auditor.py Secrets Manager secret Is the secret over 90 days old
AWS_Secrets_Manager_Auditor.py Secrets Manager secret Is secret auto-rotation enabled
AWS_Security_Hub_Auditor.py Security Hub (Account) Are there active high or critical
findings in Security Hub
AWS_Security_Services_Auditor.py IAM Access Analyzer (Account) Is IAM Access Analyzer enabled
AWS_Security_Services_Auditor.py GuardDuty (Account) Is GuardDuty enabled
AWS_Security_Services_Auditor.py Detective (Account) Is Detective enabled
AWS_Security_Services_Auditor.py Macie2 Is Macie enabled
Shodan_Auditor.py EC2 Instance Are EC2 instances w/ public IPs indexed
Shodan_Auditor.py ELBv2 (ALB) Are internet-facing ALBs indexed
Shodan_Auditor.py RDS Instance Are public accessible RDS instances indexed
Shodan_Auditor.py Elasticsearch Domain Are ES Domains outside a VPC indexed
Shodan_Auditor.py ELB (CLB) Are internet-facing CLBs indexed
Shodan_Auditor.py DMS Replication Instance Are public accessible DMS instances indexed
Shodan_Auditor.py Amazon MQ message broker Are public accessible message brokers indexed

Add-on Modules


The following are optional add-on's to ElectricEye that will extend its functionality via reporting, alerting, enrichment and/or finding lifecycle management.

  • Config Findings Pruner

    • This add-on utilizes the AWS Config recorder, an Amazon CloudWatch Event rule and AWS Lambda function to parse out the ARN / ID of a resource that has been deleted and use the Security Hub UpdateFindings API to archive the deleted resource based on its ARN / ID.
  • ElectricEye-Response

    • ElectricEye-Response is a multi-account automation framework for response and remediation actions heavily influenced by work I did when employed by AWS. From your Security Hub Master, you can launch response and remediation actions by using CloudWatch Event rules, Lambda functions, Security Token Service (STS) and downstream services (such as Systems Manager Automation or Run Command). You can run these in a targetted manner (using Custom Actions) or fully automatically (using the CloudWatch detail type of Security Hub Findings - Imported).
  • ElectricEye-ChatOps

    • ElectricEye-ChatOps utilizes EventBridge / CloudWatch Event Rules to consume HIGH and CRITICAL severity findings created by ElectricEye from Security Hub and route them to a Lambda function. Lambda will parse out certain elements from the Security Hub finding, create a message and post it to a Slack App's webhook for consumption by your security engineers or other personnel in a Slack channel.
  • ElectricEye-Reports

    • ElectricEye-Reports is an add-on that allows you the created detailed business intelligence (BI) reports from ElectricEye findings in Security Hub using Amazon QuickSight, a "...scalable, serverless, embeddable, machine learning-powered business intelligence (BI) service built for the cloud." Using QuickSight, you can create detailed reports that breakdown all of your ElectricEye findings by Severity, Region, Resource Type, as well as breakout by-Compliance Control reporting and further enrich the dataset in this solution with business-context such as Cost Center, Division, Business Owner, and other metadata. With this data you can create visualizations that can be used by a many Personas across Information Security, IT Audit, IT Operations, Product Development, and Risk functions - such as tracking compliance with specific controls, measuring Key Risk Indicators (KRIs), or preparing evidence for a formal audit certification/attestation/examination.
  • ElectricEye-Pagerduty-Integration

    • The Pagerduty integration for ElectricEye, like ElectricEye-ChatOps, utilizes EventBridge / CloudWatch Event Rules to consume HIGH and CRITICAL severity findings created by ElectricEye from Security Hub and route them to a Lambda function. Lambda will parse out certain elements from the Security Hub finding such as the title, remediation information and resource information and to form a Pagerduty Incident to be sent using the EventsV2 API. Pagerduty is an on-call management / incident management tool that has built-in intelligence and automation to route escalations, age-off incidents and can be integrated downstream with other tools.

Known Issues & Limitations


This section is likely to wax and wane depending on future releases, PRs and changes to AWS APIs.

  • If you choose to build and run ElectricEye without the IAC on your own and use an existing VPC or, in the future, decide to build internet-facing services in the ElectricEye VPC you may run into Shodan.io false positives. The socket python module will use the DNS servers available to them; getting the IPv4 address for a DNS name (from RDS or ES endpoints for example) in your VPC will return the private IP address and lead to false positives with Shodan

  • No tag-based scoping or exemption process out of the box. You will need to manually archive these, remove checks not pertinent to you and/or create your own automation to automatically archive findings for resources that shouldn't be in-scope.

  • Some resources, such as Elasticsearch Service or Elastic File System, cannot be changed after creation for some checks and will continue to show as non-compliant until you manually migrate them, or create automation to auto-archive these findings.

  • If Shodan is not working you may be getting throttled, the free tier is supposed to be 1 TPS (I've definitely hit closer to 20 TPS without issue), but it may happen. Or, you didn't rebuild the Docker image which has included requests since 12 MAR 2020. Pass a --no-cache flag if you're rebuilding on the same machine.

  • Sometimes copy and pasting the Auditors and script.sh to a S3 bucket via console from a Windows machine will carry over the bad line endings I sometimes accidently include from my own dirty Windows machine. Use the AWS CLI to copy over the files after a cloning / pulling this repo to avoid that, if you've already cloned do this:

cd ElectricEye
git pull
cd auditors
aws s3 sync . s3://<my-bucket-full-o-auditors>

FAQ


0. Why is continuous compliance monitoring (CCM) important?


One of the main benefits to moving to the cloud is the agility it gives you to quickly iterate on prototypes, drive business value and globally scale. That is what is known as a double-edge sword, because you can also quickly iterate into an insecure state. CCM gives you near real-time security configuration information from which you can: assess risk to your applications and data, determine if you fell out of compliance with regulatory or industry framework requirements and/or determine if you fell out of your organizational privacy protection posture, among other things. Depending on how you deliver software or services, this will allow your developers to continue being agile in their delivery while remediating any security issues that pop up. If security is owned by a central function, CCM allows them to at least keep up with the business, make informed risk-based decisions and quickly take action and either remediate, mitigate or accept risks due to certain configurations.

ElectricEye won't take the place of a crack squad of principal security engineers or stand-in for a compliance, infosec, privacy or risk function but it will help you stay informed to the security posture of your AWS environment across a multitude of services. You should also implement secure software delivery, privacy engineering, secure-by-design configuration, and application security programs and rely on automation where you can to develop a mature cloud security program.

Or, you could just not do security at all and look like pic below:

ThreatActorKittens

1. Why should I use this tool?


Primarily because it is free to use (you still need to pay for the infrastructure). This tool will also help cover services not currently covered by AWS Config rules or AWS Security Hub security standards. This tool is also natively integrated with Security Hub, no need to create additional services to perform translation into the AWS Security Finding Format and call the BatchImportFindings API to send findings to Security Hub.

There is logic that will auto-archive findings as they move in and out of compliance, there are also other add-ons such as multi-account response & remediation playbooks, Config Recorder integration, Shodan integration, Slack integration and others that even if you do not use ElectricEye you can get some usage from the other stuff. Or just, you know, steal the code?

Finally, you can look like the GIF below, where your security team is Jacob Trouba (New York Rangers #8 in white) laying sick open-ice hits on pesky security violations represented by Dal Colle (New York Islanders #28 in that ugly uniform). OpenIceHit

2. Will this tool help me become compliant with (insert framework of some sort here)?


No, it still won't. If you wanted to use this tool to satisfy an audit, I would recommend you work closely with your GRC and Legal functions to determine if the checks performed by ElectricEye will legally satisfy the requirements of any compliance framework or regulations you need to comply with.

If you find that it does, you can use the Compliance.RelatedRequirements array within the ASFF to denote those. I would recommend forking and modifying the code for that purpose.

However, if you 1) work on behalf of an organization who can provide attestations that these technical controls satisfy the spirit of certain requirements in certain industry or regulatory standards and 2) would like to provide an attestation for the betterment of the community please email me to discuss.

Refer to new FAQ's starting at #16 for information on the new Compliance.RelatedRequirements additions

3. Can this be the primary tool I use for AWS security assessments?


Only you can make that determination. More is always better, there are far more mature projects that exist such as Prowler, PacBot, Cloud Inquisitor and Scout2. You should perform a detailed analysis about which tools support what services, what checks, what your ultimate downstream tool will be for taking actions or analyzing findings (Splunk, Kibana, Security Hub, Demisto, Phantom, QuickSight, etc.) and how many false-positives or false-negatives are created by what tool. Some of those tools also do other things, and that is not to mention the endless list of logging, monitoring, tracing and AppSec related tools you will also need to use. There are additional tools listed in FAQ #14 below.

4. Why didn't you build Config rules do these?


I built ElectricEye with Security Hub in mind, using custom Config rules would require a lot of additional infrastructure and API calls to parse out a specific rule, map what little information Config gives to the ASFF and also perform more API calls to enrich the findings and send it, that is not something I would want to do. Additionally, you are looking at $0.001/rule evaluation/region and then have to pay for the Lambda invocations and (potentially) for any findings above the first 10,000 going to Security Hub a month.

5. What are the advantages over AWS Security Hub security standards? Why shouldn't I use those instead?


You should use them! The only notable "advantage" would be ElectricEye might support a resource before a Security Hub security standard does, or it may support a check that Security Hub security standards do not. At the very least, you should use the CIS AWS Foundations Benchmark standard, it contains common sense checks that audit IAM users and basic security group misconfigurations.

6. What are the advantages over Config Conformance Packs? Why shouldn't I use those instead?


Similar to above, ElectricEye may support another service or another type of check that Config rules do not, on top of the additional charges you pay for using Conformance packs ($0.0012 per evaluation per Region). That said, you should probably continue to use the IAM-related Config rules as many of them are powered by Zelkova, which uses automated reasoning to analyze policies and the future consequences of policies.

7. Can I scope these checks by tag or by a certain resource?


No. That is something in mind for the future, and a very good idea for a PR. The only way to do so now is to manually rewrite the checks and/or delete any auditors you don't need from use.

8. Why do I have to set this up per account? Why can't I just scan all of my resources across all accounts?


First, the IAM permissions needed to run all of the auditors' scans are numerous, and while not particularly destructive, give a lot of Read/List rights which can be an awesome recon tool (very fitting given the name of the tool) for a malicious insider or threat actor. Giving it cross-account just makes that totally-not-cool individual's job of mass destruction so much easier, this security information can give them all sorts of ideas for attacks to launch. Lastly, it could also make provisioning a little harder, given that you have to keep up to 1000s (depending on how many accounts you have) of roles up-to-date as ElectricEye adds new capabilities.

These are lazy answers above, I did not want to make this a master-member tool because security should be democratized. You are NOT doing your account owners, DevOps teams or anyone else in the business any favors if you are just running scans and slapping a report you did up in Quicksight in front of them. By allowing them to view their findings in their own Security Hub console and act on them, you are empowering and entrusting them with security goodness and fortune shall smile upon you. With that, I will not make this master-member nor accept any PRs that attempt to.

Plus, Security Hub supports master-member patterns, so you can get your nasty security-as-a-dashboard paws on the findings there.

9. Why don't you support (insert service name here)?


I will, eventually. If you really need a specific check supported RIGHT NOW please create an Issue, and if it is feasible, I will tackle it. PRs are welcome for any additions.

10. Where is that automated remediation you like so much?


You probably have me confused with someone else...That is a Phase 2 plan: after I am done scanning all the things, we can remediate all the things.

Work has started in ElectricEye-Response

11. Why do some of the severity scores / labels for the same failing check have different values?!


Some checks, such as the EC2 Systems Manager check for having the latest patches installed are dual-purpose and will have different severities. For instance, that check looks if you have any patch state information reported at all, if you do not you likely are not even managing that instance as part of the patch baseline. If a missing or failed patch is reported, then the severity is bumped up since you ARE managing patches, but something happened and now the patch is not being installed.

In a similar vein, some findings that have a severity score of 0 (severity label of INFORMATIONAL) and a Compliance status of PASSED may not be Archived if it is something you may want to pay attention to. An example of this are EBS Snapshots that are shared with other accounts, it is nowhere near as bad as being public but you should audit these accounts to make sure you are sharing with folks who should be shared with (I cannot tell who that is, your SecOps analyst should be able to).

12. What if I run into throttling issues, how can I get the findings?


For now, I put (lazy) sleep steps in the bash script that runs all the auditors. It should hopefully add enough cooldown to avoid getting near the 10TPS rate limit, let alone the 30TPS burst limit of the BIF API. You are throttled after bursting, but the auditors do not run in parallel for this reason, so you should not run into that unless for some reason you have 1000s of a single type of resource in a single region.

13. How much does this solution cost to run?


The costs are extremely negligible, as the primary costs are Fargate vCPU and Memory per GB per Hour and then Security Hub finding ingestion above 10,000 findings per Region per Month (the first 10,000 is perpetually free). We will use two scenarios as an example for the costs, you will likely need to perform your own analysis to forecast potential costs. ElectricEye's ECS Task Definition is 2 vCPU and 4GB of Memory by default. I made a very rough cost calculator in CSV you can refer to, I will try to reflect the latest that is on the ReadMe to the worksheet, but no promises.

Fargate Costs


NOTE: This does not take Savings Plans into consideration, depending if you are an Enterprise Support customer and how well you tune these, you can possibly run ElectricEye for free on Fargate!

30 Day Period: Running ElectricEye every 12 hours and it takes 5 minutes per Run
5 hours of total runtime per month: $0.493700/region/account/month

30 Day Period: Running ElectricEye every 3 hours and it takes 10 minutes per Run
40 hours of total runtime per month: $3.949600/region/account/month

Security Hub Costs


Having 5 resources per check in scope for 108 checks running 60 times a month (every 12 hours)
32,400 findings with 22,400 in scope for charges: $0.6720/region/account/month

Having 15 resources per check in scope for 108 checks running 240 times a month (every 3 hours)
388,800 findings with 378,800 in scope for charges: $11.3640/region/account/month

If you take the most expensive examples of having 15 resources in scope for 108 checks being run every 3 hours (for 40 total hours of Fargate runtime and 378K findings in Security Hub) that would be a combined monthly cost of $15.3136 with a yearly cost of $183.76 per region per account. If you were running across 4 regions that would be $735.05 and across 18 regions would be $3,307.74 per year per account.

If you ran in 2 regions across 50 accounts your approx. cost would be $18,376.32 per year, bump that up to 4 regions and 500 accounts and you are looking at approx. $367,526.40 a year (price is the same for 1 region, 2000 accounts). You could potentially save up to 70% on Fargate costs by modifying ElectricEye to run on Fargate Spot.

The best way to estimate your Security Hub costs is to refer to the Usage tab within the Settings sub-menu, this will give you your total usage types, items in scope for it and estimated items per month with a forecasted cost.

14. What are those other tools you mentioned?


You should consider taking a look at all of these:

Secrets Scanning


SAST / SCA


Linters


DAST


AV


IDS/IPS


DFIR


TVM


Threat Hunting


Red Team Toolbox


  • Pacu (AWS exploitation framework)
  • LeakLooker (Python-based finder of open databases / buckets)
  • aws_consoler (not a purpose built exploitation tool, but if your recon got you keys use this to turn it into console access)

Kubernetes / Container Microservices(?) Security Tools


  • Istio (microservices service mesh, mTLS, etc.)
  • Calico (K8s network policy)
  • Envoy (microservices proxy services, underpins AWS AppMesh)
  • Falco (a metric shitload of awesome k8s/container security features from Sysdig)
  • Goldilocks (K8s cluster right-sizing from Fairwinds)
  • Polaris (K8s best practices, YAML SCA/linting from Fairwinds)
  • kube-bench (K8s CIS Benchmark assessment from Aqua Security)
  • kube-hunter (K8s attacker-eye-view of K8s clusters from Aqua Security)
  • rbac-tool (K8s RBAC visualization tool from Alcide.io)

CCM Tools


Threat Intel Tools


  • MISP (Threat intel sharing platform, formerly Malware Information Sharing Platform)
    • PyMISP (Python implementation of MISP APIs)
  • STAXX (Community edition threat intel platform from Anomali)
  • TCOpen (Community edition of ThreatConnect's platform)

Misc / Specialized


15. Why did you swap the Dockerfile to being Alpine Linux-based?


The original (V1.0) Dockerfile used the ubuntu:latest image as its base image and was chunky (~450MB) where the Alpine image is a tiny bit under a 10th of that (41.95MB). It is also much faster to create and push the image since apk adds only what is needed and isn't bloated by the Ubuntu dependencies from apt or that come prepackaged. Lastly, the build logs are a lot less chatty with the (hacky) ENV value set for Python and Pip related logs. Oh, and as of 13 MARCH 2020 there are no vulns in this image. (Reminder for me to periodically update and confirm this)

AlpineVulns

16. I thought you said that ElectricEye will not help me pass an audit!?


I have no idea if ElectricEye can be used to pass an audit. I will make no warranty or suggestion of that. All I did was pick frameworks that are aligned to best practices such as NIST CSF and NIST SP 800-53. The other two (TSC & ISO 27001:2013) are backed by governing organizations and you will need a qualified 3rd Party Assessment Organization (3PAO) (yes I know that's a FedRAMP term) to audit you. This was requested by quite a lot of you who reached out to me so, all I did was do some light mapping from ElectricEye Auditors into NIST CSF and used the provided mappings in the CSF document to map to the other frameworks.

I would strongly suggest having your Legal, Audit, Enterprise Risk Management (ER) and InfoSec teams review these mappings if you have the crazy plan to use it for audit preparedness or as evidence during a real audit / assessment. If you manage to convince those departments to use this you should probably run away because: "And if the band you're in starts playing different tunes, I'll see you on the dark side of the moon" (Brain Damage by Pink Floyd if you didn't get the reference).

17. At a high-level, how did you map the ElectricEye Auditors into these compliance frameworks?


I am most familiar with NIST CSF so I mapped all checks that I felt satisfied the spirit of a NIST CSF Subcategory, some are very easy like NIST CSF PR.DS-1: Data-at-rest is protected, others are a bit more nuanced. Within the NIST CSF Excel workbook there are mappings that NIST did themselves into ISO/IEC 27001 and NIST SP 800-53 so I just used those as-is without touching either the SP or the ISO standard. The American Institute of Certified Public Accountants (AICPA) who is the governing body for SOC Reports and the Trust Services Criteria (TSC) also provide a mapping from TSC/COSO "points of focus" to NIST CSF which I mapped in reverse.

The Compliance.RelatedRequiremens JSON list only accepts up to 32 strings so with that in mind I was not very aggressive in my mappings to NIST CSF to avoid running over that hard limit. I blame ISO 27001:2013, that compliance framework has a ton of mapped controls from the CSF. To that effect you will only be receiving a coarse-grained mapping, at best, hence why I stress that you should do your own analysis on this. I also did not do any mapping into the Respond or Recover functions of NIST CSF, the subcategories are very vague in those areas and I cannot assume that you actually analyze and respond to threats, map that on your own if need be.

The mappings list is located here Shit, I don't know where I put that...

18. What is the NIST CSF? Is that the same as NIST SP 800-53?


The National Institute of Standards and Technology (NIST) Cybersecurity Framework (CSF) is "...voluntary guidance, based on existing standards, guidelines, and practices for organizations to better manage and reduce cybersecurity risk. In addition to helping organizations manage and reduce risks, it was designed to foster risk and cybersecurity management communications amongst both internal and external organizational stakeholders." The CSF is organized into 5 functions which consist of 104 outcome-based, risk-informed activities and requirements to help managed cyber security risk.

It is not to be confused with NIST Special Publication (SP) 800-53 revision 4 which is "...a catalog of security and privacy controls for federal information systems and organizations and a process for selecting controls to protect organizational operations (including mission, functions, image, and reputation), organizational assets, individuals, other organizations, and the Nation from a diverse set of threats including hostile cyber-attacks, natural disasters, structural failures, and human errors (both intentional and unintentional)." The controls in 800-53 are related to FedRAMP Moderate & High SSPs, the Government of Canada's ITSG-33 and other international frameworks and are regarded as a standard of which to base a cybersecurity program off.

19. What is ISO 27001?


"ISO 27001 (formally known as ISO/IEC 27001:2013) is a specification for an information security management system (ISMS). An ISMS is a framework of policies and procedures that includes all legal, physical and technical controls involved in an organization’s information risk management processes." Like other ISO standards, NIST CSF and NIST SP 800-53, it is a top-down and technology agnostic way of performing an information security risk assessment. 27001 does not have any true technical controls, those are in ISO 27002:2013, and audits are conducted as risk assessments by qualified 3rd party assessors to give you an accredited certification against ISO 27001.

There are a lot of purported benefits to ISO 27001 (and other framework compliance) but the long and short of it is a lot of organizations (suppliers, customers, partners) require it for contractual and regulatory obligations so you are going to be stuck doing one at one point or another. As noted in FAQ#16, I took what NIST provided for these mappings, I did not pay for the Standard nor do I intend to look.

20. What is the AICPA TSC? Is that the same as SOC 2 or SOC 3?


From AICPA: "The TSC are control criteria for use in attestation or consulting engagements to evaluate and report on controls over information and systems (a) across an entire entity; (b) at a subsidiary, division, or operating unit level; (c) within a function relevant to the entity's operational, reporting, or compliance objectives; or (d) for a particular type of information used by the entity." These criteria are broken into 5 different categories and aligned with COSO Principles which provided "points of focus" which are important to the criteria, akin to NIST CSF Subcategories in a way.

These are not the same as a SOC 2 or SOC 3 Report, those Reports are generated from audits that you give to external parties, it gives information about how you manage data relative to 5 different Principles. A SOC 2 Report audit is different than something rigid like ISO27002 or PCI-DSS in that your organization must pick criteria and related controls that meet the spirit of those criteria before being audited against it. The TSC can help in that matter by giving you an idea of Criteria and the "areas of focus", I suspect the mappings were done into NIST and ISO frameworks by AICPA to help more people prepare for their SOC Reports. Random point to make this more confusing, SOC 2 comes in two flavors, SOC 2 Type I details your system and design specs relative to the 5 Principles where Type II details the operational effectiveness of your systems.

I did read through the TSC and some AICPA literature, but, it's not the most fun read. There are blogs like this one from Imperva and this one from CLA that go into detail about TSC, TSP, SOCs and all that fun stuff. Since you must back your Report, it may be appropriate to bring in ElectricEye mappings since you can decide to do a SOC 2 Type I report against a specific information system or environment as detailed by AICPA. NOT THAT I WARRANT FOR THAT BY THE WAY.

21. Why didn't you do PCI-DSS or HITRUST CSF or HIPAA or GDPR or...?


Don't wish that evil on me. If you want PCI-DSS, I would use the Security Hub security standard for it, I helped work on that when I was at AWS and it was no joke an almost year-long affair. PCI-DSS is an industry regulation that has its own governing board and certification process to become a Qualified Security Assessor (QSA), the audits should only be in scope for your cardholder data environments (CDE), ElectricEye has no way to differentiate and I am a QSA so...yeah, not doing that.

HITRUST is much the same way, it is an amalgamation of stuff from the HIPAA Security and Privacy Rules, ISO, and even things like NYDFS that consists of 600+ controls and has its own multi-day, on-site assessor training course. I have not attended it, I have a lot of experience with it but it is a massive control framework and the last thing you want to do as a HCLS company on the AWS Cloud is use my stupid ass mappings to pass that audit.

As far as things the NIST Privacy Framework, the CCPA, GDPR and other Privacy regimes I will not be touching them either. They delve into stuff like privacy-by-design, privacy engineering, how you handle data and prevent disclosures and lack in technical controls. HIPAA only has a few sections that go into what they call "technical safeguards", the whole Act (along with HITECH and the Omnibus) was originally 5 Titles of which Title II delved into what became known as the Security Rule, the Privacy Rule and the Breach Notification Rule. The HHS has issued tons of guidance about it, it has the Safe Harbor act for it and even combined the relevant sections from 45 CFR for a sort-of easy read on the aforementioned 'Rules'. It is highly slim on details (other than encryption) and you are better suited with HITRUST and I am not a lawyer and won't be touching that.

Before you ask, no, I won't be doing any Government stuff (DOD-ILA, FedRAMP, FISMA) or non-US stuff (ITSG-33, IRAP, C5, etc.) because I am a combination of unqualified and unknowledgeable. All of this said, if you are qualified for any of the above and want to perform mappings with your independent sign-off, please reach out to me via a PR or on LinkedIn.

Contributing


I am very happy to accept PR's for the following:

  • Adding new Auditors
  • Adding new checks to existing Auditors
  • Adding new ElectricEye-Response playbooks
  • Adding new Event Patterns for ElectricEye-ChatOps
  • Fixing my stupid grammar errors, spelling errors and inconsistencies
  • Removing any unused IAM permissions that may have popped up
  • Adding new forms of deployment scripts or IAC (Salt stacks, Ansible playbooks, etc.)
  • Adding Terraform v0.12.x support
  • My to-do list

If you are working on another project whether open-source or commercial and want to include parts of ElectricEye (or the full thing) in your product / project, please contact me and at least give me credit. If it is a commercial offering that you'll be charging for, the GPL-3.0 says you should make it fully obvious that the customers can get it for free here.

Early Contributors


Quick shout-outs to the folks who answered the call early to test out ElectricEye and make it not-a-shit-sandwich.

Alpha Testing:

Beta Testing:

Developer Guide


  1. Naming an auditor: To keep naming consistent auditor names are based on the name of the service from the AWS Documentation and are named after the service being audited.

  2. Necessary Imports and Intro: At the top of the auditor insert the following intro and imports (although other imports may be needed)


    # ElectricEye is free software: you can redistribute it and/or modify
    # it under the terms of the GNU General Public License as published by
    # the Free Software Foundation, either version 3 of the License, or
    # (at your option) any later version.

    # ElectricEye is distributed in the hope that it will be useful,
    # but WITHOUT ANY WARRANTY; without even the implied warranty of
    # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    # GNU General Public License for more details.

    # You should have received a copy of the GNU General Public License along with ElectricEye.
    # If not, see https://github.com/jonrau1/ElectricEye/blob/master/LICENSE.

    import boto3
    import datetime
    from check_register import CheckRegister

    registry = CheckRegister()

The boto3 client will also need imported for whichever service is being audited. For example for EC2 ImageBuilder it is

imagebuilder = boto3.client("imagebuilder")

NOTE If a boto call is used multiple times within an auditor and could be put in the global space it should be cached. For example in Amazon_SNS_Auditor list_topics is used for every function so it is cached like this:

def list_topics(cache):
    response = cache.get("list_topics")
    if response:
        return response
    cache["list_topics"] = sns.list_topics()
    return cache["list_topics"]
  1. Registering and Defining Checks: All checks are registered by the same tag and checks should describe what is being checked with the word check at the end. Example from ImageBuilder.
@registry.register_check("imagebuilder")
def imagebuilder_pipeline_tests_enabled_check(cache: dict, awsAccountId: str, awsRegion: str, awsPartition: str) -> dict:
  1. Formatting Findings: Findings will be formatted for AWS Security Hub, ASSF. Look to other auditors findings format for more specifics on ElectricEye formatting. Parts that will stay consistent across checks are: SchemaVersion, ProductArn, AwsAccountId, Params with iso8601Time, ProductFields, and the Partition and Region within Resources. Example finding formatting from Amazon_SNS_Auditor:
finding = {
    "SchemaVersion": "2018-10-08",
    "Id": topicarn + "/sns-topic-encryption-check",
    "ProductArn": f"arn:{awsPartition}:securityhub:{awsRegion}:{awsAccountId}:product/{awsAccountId}/default",
    "GeneratorId": topicarn,
    "AwsAccountId": awsAccountId,
    "Types": [
        "Software and Configuration Checks/AWS Security Best Practices",
        "Effects/Data Exposure",
    ],
    "FirstObservedAt": iso8601Time,
    "CreatedAt": iso8601Time,
    "UpdatedAt": iso8601Time,
    "Severity": {"Label": "INFORMATIONAL"},
    "Confidence": 99,
    "Title": "[SNS.1] SNS topics should be encrypted",
    "Description": "SNS topic " + topicName + " is encrypted.",
    "Remediation": {
        "Recommendation": {
            "Text": "For more information on SNS encryption at rest and how to configure it refer to the Encryption at Rest section of the Amazon Simple Notification Service Developer Guide.",
            "Url": "https://docs.aws.amazon.com/sns/latest/dg/sns-server-side-encryption.html",
        }
    },
    "ProductFields": {"Product Name": "ElectricEye"},
    "Resources": [
        {
            "Type": "AwsSnsTopic",
            "Id": topicarn,
            "Partition": awsPartition,
            "Region": awsRegion,
            "Details": {"AwsSnsTopic": {"TopicName": topicName}},
        }
    ],
    "Compliance": {
        "Status": "PASSED",
        "RelatedRequirements": [
            "NIST CSF PR.DS-1",
            "NIST SP 800-53 MP-8",
            "NIST SP 800-53 SC-12",
            "NIST SP 800-53 SC-28",
            "AICPA TSC CC6.1",
            "ISO 27001:2013 A.8.2.3",
        ],
    },
    "Workflow": {"Status": "RESOLVED"},
    "RecordState": "ARCHIVED",
}
yield finding
  1. Creating Tests: For each check within an auditor there should be a corresponding test for each case the check could come across, often times a pass and fail but sometimes more. A stubber is used to give the auditor the desired responses for testing. Necessary imports are:
import datetime
import os
import pytest
import sys

from botocore.stub import Stubber, ANY
  1. Update all three IAM permissions with the new required boto permissions.

  2. Update Readme for total count of auditors/checks and the new checks are added to the list.

  3. All new checks mapped to Compliance.RelatedRequirements checks

Auditor testing


  1. Install dependencies
pip3 install -r requirements-dev.txt
  1. Run pytest
pytest

Tests are located in the eeauditor tests folder and individual test can be run by adding the path with the name of the file after pytest.

To-Do


As of 12 MAR 2020, most of these items will be tracked on the roadmap project board

  • [] Create an ElectricEye Logo
  • Add in Shodan.io checks for internet-facing resources (RDS, Redshift, DocDB, Elasticsearch, EC2, ELBv2, etc)
    • Need to test out DocDB, Redshift and MSK
  • Upload response and remediation playbooks and IAC for them - Custom Action Version (Semi Auto)
  • Upload response and remediation playbooks and IAC for them - Imported Findings (Full Auto)
  • Create an Alerting framework with ChatBot Slack for Critical findings
  • Create a Reporting module for use with QuickSight
  • [] Localization of ReadMe in: Spanish, Arabic, German, Italian, French, Japenese, etc.

License


This library is licensed under the GNU General Public License v3.0 (GPL-3.0) License. See the LICENSE file.

About

Continuously monitor your AWS services for configurations that can lead to degradation of confidentiality, integrity or availability. All results will be sent to Security Hub for further aggregation and analysis.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 95.8%
  • HCL 4.1%
  • Dockerfile 0.1%