Skip to content
This repository has been archived by the owner on Jan 12, 2024. It is now read-only.

The simplest, fastest repository for training/finetuning medium-sized GPTs.

License

Notifications You must be signed in to change notification settings

blahBlahhhJ/cs229s-nanoGPT

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Instructions to Run Our Code

Part 1

With quantization: run python run_part1_with_quant.py

Without quantization: run python run_part1_no_quant.py

Standard vs Speculative decoding: run python run_part1_decoding.py

Part 2

Protocol A:

run python run_part2_a.py --prune_method='individual' for individual weights pruning and python run_part2_a.py --prune_method='l2norm' for structured pruning

Protocol B: run python run_part2_b.py --prune_method='individual' for individual weights pruning and python run_part2_b.py --prune_method='l2norm' for structured pruning

Leaderboard

run python run_experiments.py which generates results.json

About

The simplest, fastest repository for training/finetuning medium-sized GPTs.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%