Implementation of ICIP2017 Paper: "ByNet-SR: Image Super Resolution with a Bypass Connection Network " in PyTorch
If you find the code and datasets useful in your research, please cite:
@InProceedings{ByNet,
author = {Xu, J. and Chae, Y. and Stenger, B.},
title = {{ByNet-SR}: Image Super Resolution with a Bypass Connection Network},
booktitle = {IEEE International Conference on Image Processing},
year = {2017}
}
usage: main_bynet.py [-h] [--batchSize BATCHSIZE] [--nEpochs NEPOCHS] [--lr LR]
[--step STEP] [--cuda] [--resume RESUME]
[--start-epoch START_EPOCH] [--clip CLIP] [--threads THREADS]
[--momentum MOMENTUM] [--weight-decay WEIGHT_DECAY]
[--pretrained PRETRAINED]
optional arguments:
-h, --help show this help message and exit
--batchSize BATCHSIZE
Training batch size
--nEpochs NEPOCHS Number of epochs to train
--lr LR Init learning Rate. Default=0.1
--step STEP Sets the learning rate to the initial LR decayed by
momentum every n epochs, Default: n=10
--cuda use cuda?
--resume RESUME Path to latest checkpoint (default: none)
--start-epoch START_EPOCH
Manual epoch number (useful on restarts)
--clip CLIP Clipping Gradients. Default=0.5
--threads THREADS Number of threads for data loader to use
--momentum MOMENTUM Momentum
--weight-decay WEIGHT_DECAY, --wd WEIGHT_DECAY
weight decay, Default: 1e-4
An example of training usage is shown as follows:
python main_bynet.py --cuda
usage: eval.py [-h] [--cuda] [--model MODEL] [--dataset DATASET]
[--scale SCALE]
PyTorch ByNet Eval
optional arguments:
-h, --help Show this help message and exit
--cuda use cuda?
--model MODEL Model path. Default=model/model_epoch_40.pth
--dataset DATASET Dataset name, Default: Set5
An example of training usage is shown as follows:
python eval.py --cuda
usage: demo.py [-h] [--cuda] [--model MODEL] [--image IMAGE] [--scale SCALE]
optional arguments:
-h, --help Show this help message and exit
--cuda Use cuda
--model Model path. Default=model/model_epoch_40.pth
--image Image name. Default=butterfly_GT
--scale Scale factor, Default: 4
An example of demo usage is shown as follows:
python demo.py --cuda
usage: run_without_matlab.py [-h] [--cuda] [--model MODEL] [--folder FOLDER]
PyTorch ByNet Enhance (without matlab)
optional arguments:
-h, --help show this help message and exit
--cuda use cuda?
--model MODEL Model path, Default=model/model_epoch_40.pth
--folder FOLDER Folder name
An example of demo usage is shown as follows:
python run_without_matlab.py --cuda --folder Set5
Put all images in the folder you defined and the results will be appeared in result folder
- We provide a simple hdf5 format training sample in data folder with 'data' and 'label' keys, the training data is generated with Matlab Bicubic Interplotation, please refer Code for Data Generation for creating training files.
- We provide a pretrained ByNet9 model trained on 291 images with data augmentation
- No bias is used in this implementation
- Performance in PSNR on Set5
Scale | PNSR |
---|---|
2x | 37.75 |
3x | 33.96 |
4x | 31.60 |
From left to right are ground-truth image, bicubic and ByNet