Skip to content

Commit

Permalink
group: Further simply gej_add_ge
Browse files Browse the repository at this point in the history
  • Loading branch information
real-or-random committed Feb 21, 2022
1 parent 90511aa commit 44ee32e
Show file tree
Hide file tree
Showing 2 changed files with 22 additions and 14 deletions.
11 changes: 4 additions & 7 deletions sage/prove_group_implementations.sage
Original file line number Diff line number Diff line change
Expand Up @@ -195,12 +195,6 @@ def formula_secp256k1_gej_add_ge(branch, a, b):
n = m
t = rr_alt^2
rz = a.Z * m_alt
infinity = False
if (branch & 4) != 0:
infinity = True
zeroes.update({rz : 'r.z = 0'})
else:
nonzeroes.update({rz : 'r.z != 0'})
t = t + q
rx = t
t = t * 2
Expand All @@ -213,8 +207,11 @@ def formula_secp256k1_gej_add_ge(branch, a, b):
rx = b.X
ry = b.Y
rz = 1
if infinity:
if (branch & 4) != 0:
zeroes.update({rz : 'r.z = 0'})
return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zeroes, nonzero=nonzeroes), point_at_infinity())
else:
nonzeroes.update({rz : 'r.z != 0'})
return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zeroes, nonzero=nonzeroes), jacobianpoint(rx, ry, rz))

def formula_secp256k1_gej_add_ge_old(branch, a, b):
Expand Down
25 changes: 18 additions & 7 deletions src/group_impl.h
Original file line number Diff line number Diff line change
Expand Up @@ -492,11 +492,11 @@ static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const
/* Operations: 7 mul, 5 sqr, 24 add/cmov/half/mul_int/negate/normalize_weak/normalizes_to_zero */
secp256k1_fe zz, u1, u2, s1, s2, t, tt, m, n, q, rr;
secp256k1_fe m_alt, rr_alt;
int infinity, degenerate;
int degenerate;
VERIFY_CHECK(!b->infinity);
VERIFY_CHECK(a->infinity == 0 || a->infinity == 1);

/** In:
/* In:
* Eric Brier and Marc Joye, Weierstrass Elliptic Curves and Side-Channel Attacks.
* In D. Naccache and P. Paillier, Eds., Public Key Cryptography, vol. 2274 of Lecture Notes in Computer Science, pages 335-345. Springer-Verlag, 2002.
* we find as solution for a unified addition/doubling formula:
Expand Down Expand Up @@ -558,8 +558,8 @@ static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const
secp256k1_fe_negate(&m_alt, &u2, 1); /* Malt = -X2*Z1^2 */
secp256k1_fe_mul(&tt, &u1, &m_alt); /* tt = -U1*U2 (2) */
secp256k1_fe_add(&rr, &tt); /* rr = R = T^2-U1*U2 (3) */
/** If lambda = R/M = R/0 we have a problem (except in the "trivial"
* case that Z = z1z2 = 0, and this is special-cased later on). */
/* If lambda = R/M = R/0 we have a problem (except in the "trivial"
* case that Z = z1z2 = 0, and this is special-cased later on). */
degenerate = secp256k1_fe_normalizes_to_zero(&m);
/* This only occurs when y1 == -y2 and x1^3 == x2^3, but x1 != x2.
* This means either x1 == beta*x2 or beta*x1 == x2, where beta is
Expand Down Expand Up @@ -587,7 +587,6 @@ static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const
secp256k1_fe_cmov(&n, &m, degenerate); /* n = M^3 * Malt (2) */
secp256k1_fe_sqr(&t, &rr_alt); /* t = Ralt^2 (1) */
secp256k1_fe_mul(&r->z, &a->z, &m_alt); /* r->z = Z3 = Malt*Z (1) */
infinity = secp256k1_fe_normalizes_to_zero(&r->z) & ~a->infinity;
secp256k1_fe_add(&t, &q); /* t = Ralt^2 + Q (2) */
r->x = t; /* r->x = X3 = Ralt^2 + Q (2) */
secp256k1_fe_mul_int(&t, 2); /* t = 2*X3 (4) */
Expand All @@ -597,11 +596,23 @@ static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const
secp256k1_fe_negate(&r->y, &t, 3); /* r->y = -(Ralt*(2*X3 + Q) + M^3*Malt) (4) */
secp256k1_fe_half(&r->y); /* r->y = Y3 = -(Ralt*(2*X3 + Q) + M^3*Malt)/2 (3) */

/** In case a->infinity == 1, replace r with (b->x, b->y, 1). */
/* In case a->infinity == 1, replace r with (b->x, b->y, 1). */
secp256k1_fe_cmov(&r->x, &b->x, a->infinity);
secp256k1_fe_cmov(&r->y, &b->y, a->infinity);
secp256k1_fe_cmov(&r->z, &secp256k1_fe_one, a->infinity);
r->infinity = infinity;

/* If a->infinity = 1 then r->infinity = (r->z == 0) = (1 == 0) = false.
*
* Now assume a->infinity = 0. This implies Z = Z1 != 0.
*
* Case y1 = -y2:
* We have degenerate = true, r->z = (x1 - x2) * Z.
* Then r->infinity = ((x1 - x2)Z == 0) = (x1 == -x2) = (a == -b).
*
* Case y1 != -y2:
* We have degenerate = false, r->z = (y1 + y2) * Z.
* Then r->infinity = ((y1 + y2)Z == 0) = (y1 == y2) = false. */
r->infinity = secp256k1_fe_normalizes_to_zero(&r->z);
}

static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *s) {
Expand Down

0 comments on commit 44ee32e

Please sign in to comment.