-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* bidsify output * rm tmp files * start fixing test * fix tests * post merge fix * update doc output * update tests * Update giga_connectome/postprocess.py * rm tmp * remove old data files it exists * Update giga_connectome/utils.py * make output to bids the default * make bids output the default * save correlation matrix to tsv * revert group level * one output file per atlas * isort * timeseries to tsv * fix test and output doc * Update .pre-commit-config.yaml * lint * fixes * move to contrib
- Loading branch information
Showing
11 changed files
with
305 additions
and
93 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,7 +1,93 @@ | ||
# Outputs | ||
|
||
When performing `participant` level analysis, the output is a HDF5 file per participant that was passed to `--participant_label` or all subjects under `bids_dir`. | ||
The output file name is: `sub-<participant_id>_atlas-<atlas_name>_desc-<denoising_strategy>.h5` | ||
The output of this app aims to follow the guideline | ||
of the [BIDS extension proposal 17 - Generic BIDS connectivity data schema](https://bids.neuroimaging.io/bep017). | ||
|
||
When performing `group` level analysis, the file will contain time series and connectomes of each subject, as well as group average connectomes. The output is a HDF5 file per participant that was passed to `--participant_label` or all subjects under `bids_dir`. | ||
The output file name is: `atlas-<atlas_name>_desc-<denoising_strategy>.h5` | ||
Metadata files content is described in this BIDS extension proposal. | ||
|
||
## Participant level | ||
|
||
For each participant that was passed to `--participant_label` | ||
(or all participants under `bids_dir` if no `--participant_label` is passed), | ||
the output will be save in `sub-<participant_id>/[ses-<ses_id>]/func`. | ||
|
||
### Data files | ||
|
||
For each input image (that is, preprocessed BOLD time series) | ||
and each atlas the following data files will be generated | ||
|
||
- a `[matches]_atlas-{atlas}_meas-PearsonCorrelation_desc-{atlas_description}{denoise_strategy}_relmat.tsv` | ||
file that contains the correlation matrix between all the regions of the atlas | ||
- a `[matches]_atlas-{atlas}_meas-PearsonCorrelation_desc-{atlas description}{denoise_strategy}_timeseries.tsv` | ||
file that contains the extracted timeseries for each region of the atlas | ||
|
||
- `{atlas}` refers to the name of the atlas used (for example, `Schaefer20187Networks`) | ||
- `{atlas_description}` refers to the sub type of atlas used (for example, `100Parcels7Networks`) | ||
- `{denoise_strategy}` refers to the denoise strategy passed to the command line | ||
|
||
### Metadata | ||
|
||
A JSON file is generated in the root of the output dataset (`meas-PearsonCorrelation_relmat.json`) | ||
that contains metadata applicable to all `relmat.tsv` files. | ||
|
||
For each input image (that is, preprocessed BOLD time series) | ||
a `[matches]_atlas-{atlas}_timeseries.json` | ||
|
||
### Example | ||
|
||
``` | ||
├── dataset_description.json | ||
├── logs | ||
│ └── CITATION.md | ||
├── meas-PearsonCorrelation_relmat.json | ||
├── sub-1 | ||
│ ├── ses-timepoint1 | ||
│ │ └── func | ||
│ │ ├── sub-1_ses-timepoint1_task-probabilisticclassification_run-01_space-MNI152NLin2009cAsym_res-2_atlas-Schaefer20187Networks_desc-100Parcels7NetworksSimple_timeseries.tsv | ||
│ │ ├── sub-1_ses-timepoint1_task-probabilisticclassification_run-01_space-MNI152NLin2009cAsym_res-2_atlas-Schaefer20187Networks_desc-200Parcels7NetworksSimple_timeseries.tsv | ||
│ │ ├── sub-1_ses-timepoint1_task-probabilisticclassification_run-01_space-MNI152NLin2009cAsym_res-2_atlas-Schaefer20187Networks_meas-PearsonCorrelation_desc-100Parcels7NetworksSimple_relmat.tsv | ||
│ │ ├── sub-1_ses-timepoint1_task-probabilisticclassification_run-01_space-MNI152NLin2009cAsym_res-2_atlas-Schaefer20187Networks_meas-PearsonCorrelation_desc-200Parcels7NetworksSimple_relmat.tsv | ||
│ │ ├── sub-1_ses-timepoint1_task-probabilisticclassification_run-01_space-MNI152NLin2009cAsym_res-2_atlas-Schaefer20187Networks_timeseries.json | ||
│ │ ├── sub-1_ses-timepoint1_task-probabilisticclassification_run-02_space-MNI152NLin2009cAsym_res-2_atlas-Schaefer20187Networks_desc-100Parcels7NetworksSimple_timeseries.tsv | ||
│ │ ├── sub-1_ses-timepoint1_task-probabilisticclassification_run-02_space-MNI152NLin2009cAsym_res-2_atlas-Schaefer20187Networks_desc-200Parcels7NetworksSimple_timeseries.tsv | ||
│ │ ├── sub-1_ses-timepoint1_task-probabilisticclassification_run-02_space-MNI152NLin2009cAsym_res-2_atlas-Schaefer20187Networks_meas-PearsonCorrelation_desc-100Parcels7NetworksSimple_relmat.tsv | ||
│ │ ├── sub-1_ses-timepoint1_task-probabilisticclassification_run-02_space-MNI152NLin2009cAsym_res-2_atlas-Schaefer20187Networks_meas-PearsonCorrelation_desc-200Parcels7NetworksSimple_relmat.tsv | ||
│ │ └── sub-1_ses-timepoint1_task-probabilisticclassification_run-02_space-MNI152NLin2009cAsym_res-2_atlas-Schaefer20187Networks_timeseries.json | ||
│ └── ses-timepoint2 | ||
│ └── func | ||
│ ├── sub-1_ses-timepoint2_task-probabilisticclassification_run-01_space-MNI152NLin2009cAsym_res-2_atlas-Schaefer20187Networks_desc-100Parcels7NetworksSimple_timeseries.tsv | ||
│ ├── sub-1_ses-timepoint2_task-probabilisticclassification_run-01_space-MNI152NLin2009cAsym_res-2_atlas-Schaefer20187Networks_desc-200Parcels7NetworksSimple_timeseries.tsv | ||
│ ├── sub-1_ses-timepoint2_task-probabilisticclassification_run-01_space-MNI152NLin2009cAsym_res-2_atlas-Schaefer20187Networks_meas-PearsonCorrelation_desc-100Parcels7NetworksSimple_relmat.tsv | ||
│ ├── sub-1_ses-timepoint2_task-probabilisticclassification_run-01_space-MNI152NLin2009cAsym_res-2_atlas-Schaefer20187Networks_meas-PearsonCorrelation_desc-200Parcels7NetworksSimple_relmat.tsv | ||
│ ├── sub-1_ses-timepoint2_task-probabilisticclassification_run-01_space-MNI152NLin2009cAsym_res-2_atlas-Schaefer20187Networks_timeseries.json | ||
│ ├── sub-1_ses-timepoint2_task-probabilisticclassification_run-02_space-MNI152NLin2009cAsym_res-2_atlas-Schaefer20187Networks_desc-100Parcels7NetworksSimple_timeseries.tsv | ||
│ ├── sub-1_ses-timepoint2_task-probabilisticclassification_run-02_space-MNI152NLin2009cAsym_res-2_atlas-Schaefer20187Networks_desc-200Parcels7NetworksSimple_timeseries.tsv | ||
│ ├── sub-1_ses-timepoint2_task-probabilisticclassification_run-02_space-MNI152NLin2009cAsym_res-2_atlas-Schaefer20187Networks_meas-PearsonCorrelation_desc-100Parcels7NetworksSimple_relmat.tsv | ||
│ ├── sub-1_ses-timepoint2_task-probabilisticclassification_run-02_space-MNI152NLin2009cAsym_res-2_atlas-Schaefer20187Networks_meas-PearsonCorrelation_desc-200Parcels7NetworksSimple_relmat.tsv | ||
│ └── sub-1_ses-timepoint2_task-probabilisticclassification_run-02_space-MNI152NLin2009cAsym_res-2_atlas-Schaefer20187Networks_timeseries.json | ||
└── sub-2 | ||
├── ses-timepoint1 | ||
│ └── func | ||
│ ├── sub-2_ses-timepoint1_task-probabilisticclassification_run-01_space-MNI152NLin2009cAsym_res-2_atlas-Schaefer20187Networks_desc-100Parcels7NetworksSimple_timeseries.tsv | ||
│ ├── sub-2_ses-timepoint1_task-probabilisticclassification_run-01_space-MNI152NLin2009cAsym_res-2_atlas-Schaefer20187Networks_desc-200Parcels7NetworksSimple_timeseries.tsv | ||
│ ├── sub-2_ses-timepoint1_task-probabilisticclassification_run-01_space-MNI152NLin2009cAsym_res-2_atlas-Schaefer20187Networks_meas-PearsonCorrelation_desc-100Parcels7NetworksSimple_relmat.tsv | ||
│ ├── sub-2_ses-timepoint1_task-probabilisticclassification_run-01_space-MNI152NLin2009cAsym_res-2_atlas-Schaefer20187Networks_meas-PearsonCorrelation_desc-200Parcels7NetworksSimple_relmat.tsv | ||
│ ├── sub-2_ses-timepoint1_task-probabilisticclassification_run-01_space-MNI152NLin2009cAsym_res-2_atlas-Schaefer20187Networks_timeseries.json | ||
│ ├── sub-2_ses-timepoint1_task-probabilisticclassification_run-02_space-MNI152NLin2009cAsym_res-2_atlas-Schaefer20187Networks_desc-100Parcels7NetworksSimple_timeseries.tsv | ||
│ ├── sub-2_ses-timepoint1_task-probabilisticclassification_run-02_space-MNI152NLin2009cAsym_res-2_atlas-Schaefer20187Networks_desc-200Parcels7NetworksSimple_timeseries.tsv | ||
│ ├── sub-2_ses-timepoint1_task-probabilisticclassification_run-02_space-MNI152NLin2009cAsym_res-2_atlas-Schaefer20187Networks_meas-PearsonCorrelation_desc-100Parcels7NetworksSimple_relmat.tsv | ||
│ ├── sub-2_ses-timepoint1_task-probabilisticclassification_run-02_space-MNI152NLin2009cAsym_res-2_atlas-Schaefer20187Networks_meas-PearsonCorrelation_desc-200Parcels7NetworksSimple_relmat.tsv | ||
│ └── sub-2_ses-timepoint1_task-probabilisticclassification_run-02_space-MNI152NLin2009cAsym_res-2_atlas-Schaefer20187Networks_timeseries.json | ||
└── ses-timepoint2 | ||
└── func | ||
├── sub-2_ses-timepoint2_task-probabilisticclassification_run-01_space-MNI152NLin2009cAsym_res-2_atlas-Schaefer20187Networks_desc-100Parcels7NetworksSimple_timeseries.tsv | ||
├── sub-2_ses-timepoint2_task-probabilisticclassification_run-01_space-MNI152NLin2009cAsym_res-2_atlas-Schaefer20187Networks_desc-200Parcels7NetworksSimple_timeseries.tsv | ||
├── sub-2_ses-timepoint2_task-probabilisticclassification_run-01_space-MNI152NLin2009cAsym_res-2_atlas-Schaefer20187Networks_meas-PearsonCorrelation_desc-100Parcels7NetworksSimple_relmat.tsv | ||
├── sub-2_ses-timepoint2_task-probabilisticclassification_run-01_space-MNI152NLin2009cAsym_res-2_atlas-Schaefer20187Networks_meas-PearsonCorrelation_desc-200Parcels7NetworksSimple_relmat.tsv | ||
├── sub-2_ses-timepoint2_task-probabilisticclassification_run-01_space-MNI152NLin2009cAsym_res-2_atlas-Schaefer20187Networks_timeseries.json | ||
├── sub-2_ses-timepoint2_task-probabilisticclassification_run-02_space-MNI152NLin2009cAsym_res-2_atlas-Schaefer20187Networks_desc-100Parcels7NetworksSimple_timeseries.tsv | ||
├── sub-2_ses-timepoint2_task-probabilisticclassification_run-02_space-MNI152NLin2009cAsym_res-2_atlas-Schaefer20187Networks_desc-200Parcels7NetworksSimple_timeseries.tsv | ||
├── sub-2_ses-timepoint2_task-probabilisticclassification_run-02_space-MNI152NLin2009cAsym_res-2_atlas-Schaefer20187Networks_meas-PearsonCorrelation_desc-100Parcels7NetworksSimple_relmat.tsv | ||
├── sub-2_ses-timepoint2_task-probabilisticclassification_run-02_space-MNI152NLin2009cAsym_res-2_atlas-Schaefer20187Networks_meas-PearsonCorrelation_desc-200Parcels7NetworksSimple_relmat.tsv | ||
└── sub-2_ses-timepoint2_task-probabilisticclassification_run-02_space-MNI152NLin2009cAsym_res-2_atlas-Schaefer20187Networks_timeseries.json | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.