Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Allow asset loaders to call other asset loaders - the "gzip" problem #10518

Closed
simbleau opened this issue Nov 12, 2023 · 4 comments · Fixed by #10565
Closed

Allow asset loaders to call other asset loaders - the "gzip" problem #10518

simbleau opened this issue Nov 12, 2023 · 4 comments · Fixed by #10565
Labels
A-Assets Load files from disk to use for things like images, models, and sounds C-Feature A new feature, making something new possible

Comments

@simbleau
Copy link
Contributor

The feature request is simple: Process one asset and pass it to the next asset loader.

This should be possible:

  • Asset loader exists for extensions "gz", "tar.gz"
  • Asset loader decompresses the asset
  • Asset loader sends to the next asset loader

In example:
I have a "my_image.svg.gz", which I want to be ungzipped, before my svg asset loader takes it.

@simbleau simbleau added C-Feature A new feature, making something new possible S-Needs-Triage This issue needs to be labelled labels Nov 12, 2023
@alice-i-cecile alice-i-cecile added A-Assets Load files from disk to use for things like images, models, and sounds and removed S-Needs-Triage This issue needs to be labelled labels Nov 12, 2023
@LennysLounge
Copy link

I am also interested in this as right now its not really possible to load an asset package that combines multiple assets into a single file.

The LoadContext::load_direct almost does this except it loads the asset from an asset path. We would instead need a way to load an asset from an AsyncRead impl instead.

Perhaps an API for this could look like this in LoadContext:

pub async fn load_direct_from_reader<'b>(
    &mut self,
    reader: &'a mut Reader,
    meta_file_reader: Option<&'a mut Reader>,
    path: impl Into<AssetPath<'b>>,
) -> Result<ErasedLoadedAsset, LoadDirectError> {
}

@LoopyAshy
Copy link
Contributor

I indeed had this exact issue, I'd help implement it if I wasn't so busy but I did want to drop my 2cents that it is a desirable feature.

@bushrat011899
Copy link
Contributor

The LoadContext::load_direct almost does this except it loads the asset from an asset path. We would instead need a way to load an asset from an AsyncRead impl instead.

Perhaps an API for this could look like this in LoadContext:

pub async fn load_direct_from_reader<'b>(
    &mut self,
    reader: &'a mut Reader,
    meta_file_reader: Option<&'a mut Reader>,
    path: impl Into<AssetPath<'b>>,
) -> Result<ErasedLoadedAsset, LoadDirectError> {
}

I've made a first-attempt PR based on this concept as #10565, good suggestion!

@simbleau
Copy link
Contributor Author

The LoadContext::load_direct almost does this except it loads the asset from an asset path. We would instead need a way to load an asset from an AsyncRead impl instead.
Perhaps an API for this could look like this in LoadContext:

pub async fn load_direct_from_reader<'b>(
    &mut self,
    reader: &'a mut Reader,
    meta_file_reader: Option<&'a mut Reader>,
    path: impl Into<AssetPath<'b>>,
) -> Result<ErasedLoadedAsset, LoadDirectError> {
}

I've made a first-attempt PR based on this concept as #10565, good suggestion!

Wow, awesome stuff! I'll be keeping a close eye.

github-merge-queue bot pushed a commit that referenced this issue Nov 16, 2023
# Objective

- Fixes #10518

## Solution

I've added a method to `LoadContext`, `load_direct_with_reader`, which
mirrors the behaviour of `load_direct` with a single key difference: it
is provided with the `Reader` by the caller, rather than getting it from
the contained `AssetServer`. This allows for an `AssetLoader` to process
its `Reader` stream, and then directly hand the results off to the
`LoadContext` to handle further loading. The outer `AssetLoader` can
control how the `Reader` is interpreted by providing a relevant
`AssetPath`.

For example, a Gzip decompression loader could process the asset
`images/my_image.png.gz` by decompressing the bytes, then handing the
decompressed result to the `LoadContext` with the new path
`images/my_image.png.gz/my_image.png`. This intuitively reflects the
nature of contained assets, whilst avoiding unintended behaviour, since
the generated path cannot be a real file path (a file and folder of the
same name cannot coexist in most file-systems).

```rust
#[derive(Asset, TypePath)]
pub struct GzAsset {
    pub uncompressed: ErasedLoadedAsset,
}

#[derive(Default)]
pub struct GzAssetLoader;

impl AssetLoader for GzAssetLoader {
    type Asset = GzAsset;
    type Settings = ();
    type Error = GzAssetLoaderError;
    fn load<'a>(
        &'a self,
        reader: &'a mut Reader,
        _settings: &'a (),
        load_context: &'a mut LoadContext,
    ) -> BoxedFuture<'a, Result<Self::Asset, Self::Error>> {
        Box::pin(async move {
            let compressed_path = load_context.path();
            let file_name = compressed_path
                .file_name()
                .ok_or(GzAssetLoaderError::IndeterminateFilePath)?
                .to_string_lossy();
            let uncompressed_file_name = file_name
                .strip_suffix(".gz")
                .ok_or(GzAssetLoaderError::IndeterminateFilePath)?;
            let contained_path = compressed_path.join(uncompressed_file_name);

            let mut bytes_compressed = Vec::new();

            reader.read_to_end(&mut bytes_compressed).await?;

            let mut decoder = GzDecoder::new(bytes_compressed.as_slice());

            let mut bytes_uncompressed = Vec::new();

            decoder.read_to_end(&mut bytes_uncompressed)?;

            // Now that we have decompressed the asset, let's pass it back to the
            // context to continue loading

            let mut reader = VecReader::new(bytes_uncompressed);

            let uncompressed = load_context
                .load_direct_with_reader(&mut reader, contained_path)
                .await?;

            Ok(GzAsset { uncompressed })
        })
    }

    fn extensions(&self) -> &[&str] {
        &["gz"]
    }
}
```

Because this example is so prudent, I've included an
`asset_decompression` example which implements this exact behaviour:

```rust
fn main() {
    App::new()
        .add_plugins(DefaultPlugins)
        .init_asset::<GzAsset>()
        .init_asset_loader::<GzAssetLoader>()
        .add_systems(Startup, setup)
        .add_systems(Update, decompress::<Image>)
        .run();
}

fn setup(mut commands: Commands, asset_server: Res<AssetServer>) {
    commands.spawn(Camera2dBundle::default());

    commands.spawn((
        Compressed::<Image> {
            compressed: asset_server.load("data/compressed_image.png.gz"),
            ..default()
        },
        Sprite::default(),
        TransformBundle::default(),
        VisibilityBundle::default(),
    ));
}

fn decompress<A: Asset>(
    mut commands: Commands,
    asset_server: Res<AssetServer>,
    mut compressed_assets: ResMut<Assets<GzAsset>>,
    query: Query<(Entity, &Compressed<A>)>,
) {
    for (entity, Compressed { compressed, .. }) in query.iter() {
        let Some(GzAsset { uncompressed }) = compressed_assets.remove(compressed) else {
            continue;
        };

        let uncompressed = uncompressed.take::<A>().unwrap();

        commands
            .entity(entity)
            .remove::<Compressed<A>>()
            .insert(asset_server.add(uncompressed));
    }
}
```

A key limitation to this design is how to type the internally loaded
asset, since the example `GzAssetLoader` is unaware of the internal
asset type `A`. As such, in this example I store the contained asset as
an `ErasedLoadedAsset`, and leave it up to the consumer of the `GzAsset`
to handle typing the final result, which is the purpose of the
`decompress` system. This limitation can be worked around by providing
type information to the `GzAssetLoader`, such as `GzAssetLoader<Image,
ImageAssetLoader>`, but this would require registering the asset loader
for every possible decompression target.

Aside from this limitation, nested asset containerisation works as an
end user would expect; if the user registers a `TarAssetLoader`, and a
`GzAssetLoader`, then they can load assets with compound
containerisation, such as `images.tar.gz`.

---

## Changelog

- Added `LoadContext::load_direct_with_reader`
- Added `asset_decompression` example

## Notes

- While I believe my implementation of a Gzip asset loader is
reasonable, I haven't included it as a public feature of `bevy_asset` to
keep the scope of this PR as focussed as possible.
- I have included `flate2` as a `dev-dependency` for the example; it is
not included in the main dependency graph.
rdrpenguin04 pushed a commit to rdrpenguin04/bevy that referenced this issue Jan 9, 2024
# Objective

- Fixes bevyengine#10518

## Solution

I've added a method to `LoadContext`, `load_direct_with_reader`, which
mirrors the behaviour of `load_direct` with a single key difference: it
is provided with the `Reader` by the caller, rather than getting it from
the contained `AssetServer`. This allows for an `AssetLoader` to process
its `Reader` stream, and then directly hand the results off to the
`LoadContext` to handle further loading. The outer `AssetLoader` can
control how the `Reader` is interpreted by providing a relevant
`AssetPath`.

For example, a Gzip decompression loader could process the asset
`images/my_image.png.gz` by decompressing the bytes, then handing the
decompressed result to the `LoadContext` with the new path
`images/my_image.png.gz/my_image.png`. This intuitively reflects the
nature of contained assets, whilst avoiding unintended behaviour, since
the generated path cannot be a real file path (a file and folder of the
same name cannot coexist in most file-systems).

```rust
#[derive(Asset, TypePath)]
pub struct GzAsset {
    pub uncompressed: ErasedLoadedAsset,
}

#[derive(Default)]
pub struct GzAssetLoader;

impl AssetLoader for GzAssetLoader {
    type Asset = GzAsset;
    type Settings = ();
    type Error = GzAssetLoaderError;
    fn load<'a>(
        &'a self,
        reader: &'a mut Reader,
        _settings: &'a (),
        load_context: &'a mut LoadContext,
    ) -> BoxedFuture<'a, Result<Self::Asset, Self::Error>> {
        Box::pin(async move {
            let compressed_path = load_context.path();
            let file_name = compressed_path
                .file_name()
                .ok_or(GzAssetLoaderError::IndeterminateFilePath)?
                .to_string_lossy();
            let uncompressed_file_name = file_name
                .strip_suffix(".gz")
                .ok_or(GzAssetLoaderError::IndeterminateFilePath)?;
            let contained_path = compressed_path.join(uncompressed_file_name);

            let mut bytes_compressed = Vec::new();

            reader.read_to_end(&mut bytes_compressed).await?;

            let mut decoder = GzDecoder::new(bytes_compressed.as_slice());

            let mut bytes_uncompressed = Vec::new();

            decoder.read_to_end(&mut bytes_uncompressed)?;

            // Now that we have decompressed the asset, let's pass it back to the
            // context to continue loading

            let mut reader = VecReader::new(bytes_uncompressed);

            let uncompressed = load_context
                .load_direct_with_reader(&mut reader, contained_path)
                .await?;

            Ok(GzAsset { uncompressed })
        })
    }

    fn extensions(&self) -> &[&str] {
        &["gz"]
    }
}
```

Because this example is so prudent, I've included an
`asset_decompression` example which implements this exact behaviour:

```rust
fn main() {
    App::new()
        .add_plugins(DefaultPlugins)
        .init_asset::<GzAsset>()
        .init_asset_loader::<GzAssetLoader>()
        .add_systems(Startup, setup)
        .add_systems(Update, decompress::<Image>)
        .run();
}

fn setup(mut commands: Commands, asset_server: Res<AssetServer>) {
    commands.spawn(Camera2dBundle::default());

    commands.spawn((
        Compressed::<Image> {
            compressed: asset_server.load("data/compressed_image.png.gz"),
            ..default()
        },
        Sprite::default(),
        TransformBundle::default(),
        VisibilityBundle::default(),
    ));
}

fn decompress<A: Asset>(
    mut commands: Commands,
    asset_server: Res<AssetServer>,
    mut compressed_assets: ResMut<Assets<GzAsset>>,
    query: Query<(Entity, &Compressed<A>)>,
) {
    for (entity, Compressed { compressed, .. }) in query.iter() {
        let Some(GzAsset { uncompressed }) = compressed_assets.remove(compressed) else {
            continue;
        };

        let uncompressed = uncompressed.take::<A>().unwrap();

        commands
            .entity(entity)
            .remove::<Compressed<A>>()
            .insert(asset_server.add(uncompressed));
    }
}
```

A key limitation to this design is how to type the internally loaded
asset, since the example `GzAssetLoader` is unaware of the internal
asset type `A`. As such, in this example I store the contained asset as
an `ErasedLoadedAsset`, and leave it up to the consumer of the `GzAsset`
to handle typing the final result, which is the purpose of the
`decompress` system. This limitation can be worked around by providing
type information to the `GzAssetLoader`, such as `GzAssetLoader<Image,
ImageAssetLoader>`, but this would require registering the asset loader
for every possible decompression target.

Aside from this limitation, nested asset containerisation works as an
end user would expect; if the user registers a `TarAssetLoader`, and a
`GzAssetLoader`, then they can load assets with compound
containerisation, such as `images.tar.gz`.

---

## Changelog

- Added `LoadContext::load_direct_with_reader`
- Added `asset_decompression` example

## Notes

- While I believe my implementation of a Gzip asset loader is
reasonable, I haven't included it as a public feature of `bevy_asset` to
keep the scope of this PR as focussed as possible.
- I have included `flate2` as a `dev-dependency` for the example; it is
not included in the main dependency graph.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
A-Assets Load files from disk to use for things like images, models, and sounds C-Feature A new feature, making something new possible
Projects
None yet
Development

Successfully merging a pull request may close this issue.

5 participants