-
-
Notifications
You must be signed in to change notification settings - Fork 3.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Allow asset loaders to call other asset loaders - the "gzip" problem #10518
Comments
I am also interested in this as right now its not really possible to load an asset package that combines multiple assets into a single file. The Perhaps an API for this could look like this in pub async fn load_direct_from_reader<'b>(
&mut self,
reader: &'a mut Reader,
meta_file_reader: Option<&'a mut Reader>,
path: impl Into<AssetPath<'b>>,
) -> Result<ErasedLoadedAsset, LoadDirectError> {
} |
I indeed had this exact issue, I'd help implement it if I wasn't so busy but I did want to drop my 2cents that it is a desirable feature. |
I've made a first-attempt PR based on this concept as #10565, good suggestion! |
Wow, awesome stuff! I'll be keeping a close eye. |
# Objective - Fixes #10518 ## Solution I've added a method to `LoadContext`, `load_direct_with_reader`, which mirrors the behaviour of `load_direct` with a single key difference: it is provided with the `Reader` by the caller, rather than getting it from the contained `AssetServer`. This allows for an `AssetLoader` to process its `Reader` stream, and then directly hand the results off to the `LoadContext` to handle further loading. The outer `AssetLoader` can control how the `Reader` is interpreted by providing a relevant `AssetPath`. For example, a Gzip decompression loader could process the asset `images/my_image.png.gz` by decompressing the bytes, then handing the decompressed result to the `LoadContext` with the new path `images/my_image.png.gz/my_image.png`. This intuitively reflects the nature of contained assets, whilst avoiding unintended behaviour, since the generated path cannot be a real file path (a file and folder of the same name cannot coexist in most file-systems). ```rust #[derive(Asset, TypePath)] pub struct GzAsset { pub uncompressed: ErasedLoadedAsset, } #[derive(Default)] pub struct GzAssetLoader; impl AssetLoader for GzAssetLoader { type Asset = GzAsset; type Settings = (); type Error = GzAssetLoaderError; fn load<'a>( &'a self, reader: &'a mut Reader, _settings: &'a (), load_context: &'a mut LoadContext, ) -> BoxedFuture<'a, Result<Self::Asset, Self::Error>> { Box::pin(async move { let compressed_path = load_context.path(); let file_name = compressed_path .file_name() .ok_or(GzAssetLoaderError::IndeterminateFilePath)? .to_string_lossy(); let uncompressed_file_name = file_name .strip_suffix(".gz") .ok_or(GzAssetLoaderError::IndeterminateFilePath)?; let contained_path = compressed_path.join(uncompressed_file_name); let mut bytes_compressed = Vec::new(); reader.read_to_end(&mut bytes_compressed).await?; let mut decoder = GzDecoder::new(bytes_compressed.as_slice()); let mut bytes_uncompressed = Vec::new(); decoder.read_to_end(&mut bytes_uncompressed)?; // Now that we have decompressed the asset, let's pass it back to the // context to continue loading let mut reader = VecReader::new(bytes_uncompressed); let uncompressed = load_context .load_direct_with_reader(&mut reader, contained_path) .await?; Ok(GzAsset { uncompressed }) }) } fn extensions(&self) -> &[&str] { &["gz"] } } ``` Because this example is so prudent, I've included an `asset_decompression` example which implements this exact behaviour: ```rust fn main() { App::new() .add_plugins(DefaultPlugins) .init_asset::<GzAsset>() .init_asset_loader::<GzAssetLoader>() .add_systems(Startup, setup) .add_systems(Update, decompress::<Image>) .run(); } fn setup(mut commands: Commands, asset_server: Res<AssetServer>) { commands.spawn(Camera2dBundle::default()); commands.spawn(( Compressed::<Image> { compressed: asset_server.load("data/compressed_image.png.gz"), ..default() }, Sprite::default(), TransformBundle::default(), VisibilityBundle::default(), )); } fn decompress<A: Asset>( mut commands: Commands, asset_server: Res<AssetServer>, mut compressed_assets: ResMut<Assets<GzAsset>>, query: Query<(Entity, &Compressed<A>)>, ) { for (entity, Compressed { compressed, .. }) in query.iter() { let Some(GzAsset { uncompressed }) = compressed_assets.remove(compressed) else { continue; }; let uncompressed = uncompressed.take::<A>().unwrap(); commands .entity(entity) .remove::<Compressed<A>>() .insert(asset_server.add(uncompressed)); } } ``` A key limitation to this design is how to type the internally loaded asset, since the example `GzAssetLoader` is unaware of the internal asset type `A`. As such, in this example I store the contained asset as an `ErasedLoadedAsset`, and leave it up to the consumer of the `GzAsset` to handle typing the final result, which is the purpose of the `decompress` system. This limitation can be worked around by providing type information to the `GzAssetLoader`, such as `GzAssetLoader<Image, ImageAssetLoader>`, but this would require registering the asset loader for every possible decompression target. Aside from this limitation, nested asset containerisation works as an end user would expect; if the user registers a `TarAssetLoader`, and a `GzAssetLoader`, then they can load assets with compound containerisation, such as `images.tar.gz`. --- ## Changelog - Added `LoadContext::load_direct_with_reader` - Added `asset_decompression` example ## Notes - While I believe my implementation of a Gzip asset loader is reasonable, I haven't included it as a public feature of `bevy_asset` to keep the scope of this PR as focussed as possible. - I have included `flate2` as a `dev-dependency` for the example; it is not included in the main dependency graph.
# Objective - Fixes bevyengine#10518 ## Solution I've added a method to `LoadContext`, `load_direct_with_reader`, which mirrors the behaviour of `load_direct` with a single key difference: it is provided with the `Reader` by the caller, rather than getting it from the contained `AssetServer`. This allows for an `AssetLoader` to process its `Reader` stream, and then directly hand the results off to the `LoadContext` to handle further loading. The outer `AssetLoader` can control how the `Reader` is interpreted by providing a relevant `AssetPath`. For example, a Gzip decompression loader could process the asset `images/my_image.png.gz` by decompressing the bytes, then handing the decompressed result to the `LoadContext` with the new path `images/my_image.png.gz/my_image.png`. This intuitively reflects the nature of contained assets, whilst avoiding unintended behaviour, since the generated path cannot be a real file path (a file and folder of the same name cannot coexist in most file-systems). ```rust #[derive(Asset, TypePath)] pub struct GzAsset { pub uncompressed: ErasedLoadedAsset, } #[derive(Default)] pub struct GzAssetLoader; impl AssetLoader for GzAssetLoader { type Asset = GzAsset; type Settings = (); type Error = GzAssetLoaderError; fn load<'a>( &'a self, reader: &'a mut Reader, _settings: &'a (), load_context: &'a mut LoadContext, ) -> BoxedFuture<'a, Result<Self::Asset, Self::Error>> { Box::pin(async move { let compressed_path = load_context.path(); let file_name = compressed_path .file_name() .ok_or(GzAssetLoaderError::IndeterminateFilePath)? .to_string_lossy(); let uncompressed_file_name = file_name .strip_suffix(".gz") .ok_or(GzAssetLoaderError::IndeterminateFilePath)?; let contained_path = compressed_path.join(uncompressed_file_name); let mut bytes_compressed = Vec::new(); reader.read_to_end(&mut bytes_compressed).await?; let mut decoder = GzDecoder::new(bytes_compressed.as_slice()); let mut bytes_uncompressed = Vec::new(); decoder.read_to_end(&mut bytes_uncompressed)?; // Now that we have decompressed the asset, let's pass it back to the // context to continue loading let mut reader = VecReader::new(bytes_uncompressed); let uncompressed = load_context .load_direct_with_reader(&mut reader, contained_path) .await?; Ok(GzAsset { uncompressed }) }) } fn extensions(&self) -> &[&str] { &["gz"] } } ``` Because this example is so prudent, I've included an `asset_decompression` example which implements this exact behaviour: ```rust fn main() { App::new() .add_plugins(DefaultPlugins) .init_asset::<GzAsset>() .init_asset_loader::<GzAssetLoader>() .add_systems(Startup, setup) .add_systems(Update, decompress::<Image>) .run(); } fn setup(mut commands: Commands, asset_server: Res<AssetServer>) { commands.spawn(Camera2dBundle::default()); commands.spawn(( Compressed::<Image> { compressed: asset_server.load("data/compressed_image.png.gz"), ..default() }, Sprite::default(), TransformBundle::default(), VisibilityBundle::default(), )); } fn decompress<A: Asset>( mut commands: Commands, asset_server: Res<AssetServer>, mut compressed_assets: ResMut<Assets<GzAsset>>, query: Query<(Entity, &Compressed<A>)>, ) { for (entity, Compressed { compressed, .. }) in query.iter() { let Some(GzAsset { uncompressed }) = compressed_assets.remove(compressed) else { continue; }; let uncompressed = uncompressed.take::<A>().unwrap(); commands .entity(entity) .remove::<Compressed<A>>() .insert(asset_server.add(uncompressed)); } } ``` A key limitation to this design is how to type the internally loaded asset, since the example `GzAssetLoader` is unaware of the internal asset type `A`. As such, in this example I store the contained asset as an `ErasedLoadedAsset`, and leave it up to the consumer of the `GzAsset` to handle typing the final result, which is the purpose of the `decompress` system. This limitation can be worked around by providing type information to the `GzAssetLoader`, such as `GzAssetLoader<Image, ImageAssetLoader>`, but this would require registering the asset loader for every possible decompression target. Aside from this limitation, nested asset containerisation works as an end user would expect; if the user registers a `TarAssetLoader`, and a `GzAssetLoader`, then they can load assets with compound containerisation, such as `images.tar.gz`. --- ## Changelog - Added `LoadContext::load_direct_with_reader` - Added `asset_decompression` example ## Notes - While I believe my implementation of a Gzip asset loader is reasonable, I haven't included it as a public feature of `bevy_asset` to keep the scope of this PR as focussed as possible. - I have included `flate2` as a `dev-dependency` for the example; it is not included in the main dependency graph.
The feature request is simple: Process one asset and pass it to the next asset loader.
This should be possible:
In example:
I have a "my_image.svg.gz", which I want to be ungzipped, before my svg asset loader takes it.
The text was updated successfully, but these errors were encountered: