Skip to content

berab/thesis-tinyml

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Multi-objective optimization of Audio Processing DNNs on Embedded Hardware

Description:

As part of this master thesis, the following investigations need to be carried out.

  • Get familiar with the state-of-the-art models for the two audio process- ing applications.
  • Utilize existing optimization techniques with the audio processing ap- plications.
  • Select the methods that are deployable on the available embedded hardware.
  • Develop a hardware-aware multi-objective optimization flow.
  • Target a specific objective for innovation or competition with the state- of-the-art.

How to get started with the baseline

First you have to setup the required environment (Download dcase20 dataset):

python -m venv envs/torch
source envs/torch/bin/activate
pip install -r requirements.txt
./dcase.sh
export CUBLAS_WORKSPACE_CONFIG=:16:8

After that everything should be setup to run tests:

pytest src/*

Now you can run the baseline for several audio processing application:

python src/main.py

Set --config-name=asc3 or sc for different applications. Take a look inside YAML files to see possible configurations.

Pruning

You can run lottery ticket experiments or training with iterative pruning:

python src/main.py apply=lottery
python src/main.py apply=itr-prune

Or you can just prune a pretrained model:

python src/main.py apply=prune model_dir=path/to/model/state

Quantization

Setup the required environment for NEMO:

python -m venv envs/nemo
source envs/nemo/bin/activate
pip install -r requirements-nemo.txt

You can post-training quantization and fine-tuning with NEMO or Nvidia:

python src/main.py model.quant=nemo model_dir=path/to/model/state optim=sgd-steplr optim.optim.lr=0.001 n_epochs=5
python src/main.py model.quant=nvidia model_dir=path/to/model/state optim=sgd-steplr optim.optim.lr=0.001 n_epochs=5

Or you can run quantization-aware-training with Brevitas(Currently only for SC):

python src/main.py --config-name=sc model.quant=brevitas

Knowledge distillation

python src/main.py --config-name=sc tmodel=vgg19 tmodel_dir=/path/to/teacher/state model_dir=/path/to/student/state optim.optim.lr=0.001

Testing

You can test a pre-trained network:

python src/main.py apply=test model_dir=path/to/model/state

Resources

Compression techniques

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published