Skip to content

Architecture.zh CN

Ben edited this page Feb 18, 2024 · 1 revision

架构设计

LobeChat 是一个基于 Next.js 框架构建的 AI 会话应用,旨在提供一个 AI 生产力平台,使用户能够与 AI 进行自然语言交互。以下是 LobeChat 的架构设计介稿:

TOC

应用架构概览

LobeChat 的整体架构由前端、EdgeRuntime API、Agents 市场、插件市场和独立插件组成。这些组件相互协作,以提供完整的 AI 体验。

前端架构

LobeChat 的前端采用 Next.js 框架,利用其强大的 SSR(服务器端渲染)能力和路由功能。前端使用了一系列技术栈,包括 antd 组件库和 lobe-ui AIGC 组件库、zustand 状态管理、swr 请求库、i18next 国际化库等。这些技术栈共同支持了 LobeChat 的功能和特性。

前端架构中的组件包括 app、components、config、const、features、helpers、hooks、layout、locales、migrations、prompts、services、store、styles、types 和 utils。每个组件都有特定的职责,并与其他组件协同工作,以实现不同的功能。

Edge Runtime API

Edge Runtime API 是 LobeChat 的核心组件之一,负责处理 AI 会话的核心逻辑。它提供了与 AI 引擎的交互接口,包括自然语言处理、意图识别和回复生成等。EdgeRuntime API 与前端进行通信,接收用户的输入并返回相应的回复。

Agents 市场

Agents 市场是 LobeChat 的一个重要组成部分,它提供了各种不同场景的 AI Agent,用于处理特定的任务和领域。Agents 市场还提供了使用和上传 Agent 的功能,使用户能够发现其他人制作的 Agent ,也可以一键分享自己的 Agent 到市场上。

插件市场

插件市场是 LobeChat 的另一个关键组件,它提供了各种插件,用于扩展 LobeChat 的功能和特性。插件可以是独立的功能模块,也可以与 Agents 市场的 Agent 进行集成。在会话中,助手将自动识别用户的输入,并识别适合的插件并传递给相应的插件进行处理,并返回处理结果。

安全性和性能优化

LobeChat 的安全性策略包括身份验证和权限管理。用户需要进行身份验证后才能使用 LobeChat,同时根据用户的权限进行相应的操作限制。

为了优化性能,LobeChat 使用了 Next.js 的 SSR 功能,实现了快速的页面加载和响应时间。此外,还采用了一系列的性能优化措施,包括代码分割、缓存和资源压缩等。

开发和部署流程

LobeChat 的开发流程包括版本控制、测试、持续集成和持续部署。开发团队使用版本控制系统进行代码管理,并进行单元测试和集成测试以确保代码质量。持续集成和持续部署流程确保了代码的快速交付和部署。

以上是 LobeChat 的架构设计介绍简介,详细解释了各个组件的职责和协作方式,以及设计决策对应用功能和性能的影响。

Clone this wiki locally